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Abstract

The 2-uniform tilings of the plane provide doubly semi-equivelar maps on torus, as the 1-

uniform tilings provide semi-equivelar maps. There are twenty distinct 2-uniform tilings of the

plane. In this article, we give a construction to classify and enumerate doubly semi-equivelar

maps on the surface of torus corresponding to the 2-uniform tilings [36 : 33.42]1, [3
6 : 33.42]2,

[36 : 32.4.3.4], [33.42 : 32.4.3.4]1, [3
3.42 : 32.4.3.4]2, [3

3.42 : 44]1 and [33.42 : 44]2.
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1 Introduction

A tiling of the plane, using regular polygons, is called a k-uniform tiling if it is edge to edge and
has precisely k classes of vertices under the action of its symmetry. Grünbaum [9] described such
tilings nicely in his book “Tilings and Patterns”. Since the plane is the universal cover of torus and
Klein bottle, the 2-uniform tilings suggest to explore the same type (locally) maps on these two
surfaces as associated to these tilings. In this context, an extensive study has been done for the
eleven 1-uniform tilings under the names regular, degree-regular, equivelar and semi-equivelar maps.
Altshuler [1], Kurth [13], Datta and Nilakantan [7], Datta and Upadhyay [8], Brehm and Kühnel[5]
studied semi-equivelar maps corresponding to the 1-uniform tilings [36], [44] and [63]. Tiwari and
Upadhyay [10], Maity and Upadhyay [14] studied semi-equivelar maps on torus and Klein bottle
corresponding to the tilings [34.6], [33.42], [32.4.3.4], [3.6.3.6], [3.4.6.4], [3.122], [4.6.12] and [4.82].
More recently, Datta and Maity [6] studied such maps in a group theocrtical point of view.

In [11], Tiwari et al. introduced a theory of maps on torus and Klein bottle corresponding
to the 2-uniform tiings under the name doubly semi-equivelar maps. They enumerated all the
doubly semi-equivelar maps on these two surfaces up to 15 vertices corresponding to the 2-uniform
tilings [36 : 33.42]1, [3

6 : 33.42]2, [3
6 : 32.4.3.4], [33.42 : 32.4.3.4]1, [3

3.42 : 32.4.3.4]2, [3
3.42 : 44]1

and [33.42 : 44]2. Their method of classification becomes more complex as the number of vertices
increases. To overcome (avoid) this difficulty, here, we give a construction to classify doubly semi-
equivelar maps on torus corresponding to the 2-uniform tilings for arbitrary number of vertices.
We describe this construction corresponding to the above seven types tilings. A study of doubly
semi-equivelar maps for Klein bottle is carried out in [12].

We proceed the article as follows. In Section 2, we start with the preliminaries. Here, we
describe semi-equivelar and doubly semi-equivelar maps. We conclude this section by presenting
the aim of this article explicitly. In Section 3, we give a constriction to classify and enumerate
doubly semi-equivelar maps for the seven types 2-uniform tilings. Moreover, we enumerate such
maps for different number of vertices.
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2 Definitions and notations

Let G be a graph with the vertex set V (G) and edge set E(G) respectively. The notation u-v
denotes an edge joining u, v ∈ V (G). Let Q = Ck(v1, . . . , vk) denote a cycle v1-v2- · · · -vk-v1 of
length k. A cycle Q is called contractible it is the boundary of a 2-disk Dp, p ≥ 3, otherwise
called non-contractible. Let P = P (u1, . . . , un) denote a path u1-u2- · · · -un. The vertices ui,
2 ≤ i ≤ n− 1, are called inner vertices and u1, u2 are called boundary vertices of the path. A path
P1 is called an extension of another path P2 if P2 is a proper subgraph of P1. The notations G1∪G2

and G1 ∩ G2 denote the usual union and intersection of two graphs G1 and G2. These definitions
also can be seen in [2].

Let F be a surface (closed) and G be a connected, simple graph. An embedding of G into F is
called a map M if the closure of each components of F \G is a p-gonal 2-disk Dp, p ≥ 3. Thus there
are precisely three components in a map, namely the disks, also called faces, vertices and edges.
The vertices and edges of M are nothing but the vertices and edges of the underlying graph G of M .
A map is called a polyhedral map if the non-empty intersection of any two distinct faces is either a
vertex or an edge, see [4]. Throughout this article, by a map we mean a polyhedral map. Two maps
M1 and M2, with vertex sets V (M1) and V (M2) respectively, are isomorphic, denoted as M1

∼= M2,
if there is a bijective map f : V (M1) → V (M2) which preserves the incidence of edges and incidence
of faces in the maps. The face-sequence of a vertex v, denoted as fseq(v), in a map M is a finite
sequence (pn1

1 , . . . , pnk

k ) such that n1 numbers of Dp1 , n2 numbers of Dp2 , . . ., nk numbers of Dpk

incident at v in the given cyclic order. A map M is called semi-equivelar of type [pn1
1 . . . . .pnk

k ] if the
face-sequence of each vertex is same, i.e., (pn1

1 , . . . , pnk

k ), see [10].

Let v be a vertex in a map M such that Dp1 , . . . ,Dpk be consecutive faces around v, i.e., the
face-cycle at v is (Dp1 , . . . ,Dpk). Let Cpi be the boundary of Dpi , for 1 ≤ i ≤ k. Then the link
of v, denoted as lk(v), is a cycle in the underlying graph of M containing all the vertices of Cpi ’s
except v and all the edges of Cpi ’s except which has one end vertex v. If v is a vertex with lk(v) =
Ck(v1, . . . , vk) then the face-sequence of lk(v) is a cyclically ordered sequence (fseq(v1), . . . , fseq(vk)).

Let v be a vertex with the face sequence (pn1
1 , . . . , pnk

k ). The combinatorial curvature of v,

denoted by φ(v), is defined as φ(v) = 1− (
∑k

i=1 ni)/2 + (
∑k

i=1 ni/pi)).
We now generalize the definition of semi-equivelar map for the maps having two distinct face-

sequences under some restrictions and call such map as doubly semi-equivelar map.

Suppose, M is a map with two distinct face-sequences f1 and f2. Then M is called a doubly semi-
equivelar map [11], in short DSEM, if (i) φ(v) has same sign (i.e., either negative, 0 or positive) for
all v ∈ V (M), and (ii) the vertices of same face-sequence also have links of same face-sequence up to

a cyclic permutation. We denote the M of type [f
(f11,...,f1r1 )
1 : f

(f21,...,f2r2 )
2 ], where f1i, f2j ∈ {f1, f2},

for 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2, if vertices of the face-sequence f1 have links of face-sequence
(f11, . . . , f1r1) and vertices of the face-sequence f2 have links of face-sequence (f21, . . . , f2r2).

The present work is motivated by an attempt to enumerate doubly semi-equivelar maps corre-
sponding to the 2-uniform tilings which have p-gon tiles with p ≤ 4, that is, the tilings: [36 : 33.42]2,
[36 : 32.4.3.4], [33.42 : 32.4.3.4]1, [33.42 : 32.4.3.4]2, [33.42 : 44]1, [33.42 : 44]2, [36 : 34.6]1. Their
respective DSEM types are given in Table 2 of [11]. For simplicity, the types of these DSEMs are
denoted by the same notations as used for the respective tilings. We show:

Theorem 2.1 The doubly semi-equivelar maps with n vertices of type X, where X = [36 : 33.42]1,
[36 : 33.42]2, [3

6 : 32.4.3.4], [33.42 : 32.4.3.4]1, [3
3.42 : 32.4.3.4]2, [3

3.42 : 44]1 or [33.42 : 44]2, can be
classified on torus up to the isomorphism.

Moreover we enumerate the above types DSEMs for few vertices, see Table 3.1-3.7.
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3 Classification of doubly semi-equivelar maps on torus

Altshuler [1] has given an algorithmic approach to enumerate semi-equivelar maps on torus for
the types [36], [44] and [63]. Maity and Upadhyay [14] generalized their approach for the remain-
ing types of semi-equivelar maps on torus. The present construction to enumerate doubly semi-
equivelar maps is motivated by the theory of semi-equivelar maps given in [14]. Throughout this
section, by a map we mean a map on torus. Let u be a vertex with face-sequence (36), (33, 42),
(32, 4, 3, 4) or (44). We denote their respective link by lk(u) = C6(u1, u2, u3, u4, u5, u6), lk(u) =
C7(u1, u2,u3, u4, u5, u6, u7), lk(u) = C7(u1, u2, u3,u4, u5, u6,u7) or lk(u) = C8(u1,u2, u3,u4, u5,
u6, u7,u8) (labeling of vertices in the links are considered anti-clockwise). The bold appearance
of some ui means u is not adjacent with ui by an edge. We use these notations frequently in this
section.

3.1 DSEMs of type [36 : 33.42]1

Let M be a DSEM of type [36 : 33.42]1 with the vertex set V (M). Let V(36) and V(33,42) denote the
vertex sets with face-sequences (36) and (33, 42) respectively. Clearly V (M) = V(36) ∪ V(33,42). It
is easy to see that the number of triangular faces in M is 4|V(36)| or 2|V(33,42)|, where |V(36)| and
|V(33,42)| denote the respective cardinality of sets V(36) and V(33,42). Thus for existence of M , we
have 4|V(36)| = 2|V(33,42)|, that is, 2|V(36)| = |V(33,42)|. Now consider the following three paths P1,
P2 and P3 in M as follows.

Definition 3.1.1 A path P1 = P (. . . , yi−1, yi, yi+1, . . .) in M is of type A1 if all the triangles
incident with an inner vertex yi lie on one side and all the quadrangles incident with yi lie on the
other side of the subpath P ′(yi−1, yi, yi+1) or every vertex of the path have face-sequence (36), see
Figure 3.1.1. If a boundary vertex of P1 is yj then there is an extended path say Pe of P1 s.t. yj is
an inner vertex of Pe.

A3 A2A2

A1

A1

Figure 3.1.1: Paths of types A1, A2, A3
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Q1

Q2

Q3

Q4

Qj

Q1

Qj−1
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Figure 3.1.2: M(i, j, k)
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. . .. . .. . .

. . .. . .. . .

y1 y2 y3 y4

z1 z2 z3 z4

xi x1

yi y1

zi z1

Figure 3.1.3: Cylinder-I

u1 u2 u3 u4

v1 v2 v3 v4

w1 w2 w3 w4

. . .. . .. . .

. . .. . .. . .

. . .. . .. . .
ui u1

vi v1

wi w1

Figure 3.1.4: Cylinder-II

Definition 3.1.2 Consider a path P2 = P (. . . , zi−1, zi, zi+1, . . .) in M such that zi, zi+1 are inner
vertices of P2 or an extended path of P2. We say that P2 is of type A2, see Figure 3.1.1, if either of
the following two conditions occur for each vertex of the path.
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1. if lk(zi) = C7(m, zi−1,n, o, zi+1, p, q) then lk(zi+1) = C6(zi, o, r, zi+2, s, p), lk(zi+2) = C7(t,
zi+3,u, s, zi+1, r, v), and if lk(zi) = C7(m, zi+1,n, o, zi−1, p, q) then lk(zi+1) = C7(o, zi, q,m,
zi+2, r, n), lk(zi+2) = C6(zi+1,m, s, zi+3, t, r).

2. if lk(zi) = C6(zi−1,m, n, zi+1, o, p) then lk(zi+1) = C7(q, zi+2, r, o, n, zi, n, s), lk(zi+2) =
C7(o, zi+1, s, q, zi+3, t, r), and if lk(zi) = C6(zi+1,m, n, zi−1, o, p) then lk(zi+1) = C7(q, zi+2, r,
m, zi, p, s), lk(zi+2) = C7(m, zi+1, s, q, zi+3, t, r).

Definition 3.1.3 Consider a path P3 = P (. . . , wi−1, wi, wi+1, . . .) in M such that wi, wi+1 are inner
vertices of P3 or an extended path of P3. We say that P3 is of type A3, see Figure 3.1.1, if either of
the following two conditions occur for each vertex of the path

1. if lk(wi) = C7(m, wi−1,n, o, p, wi+1, q) then lk(wi+1) = C6(q, wi, p, r, wi+2, s), lk(wi+2) =
C7(t, wi+3,u, v, s, wi+1, ), and if lk(wi) = C7(m, wi+1,n, o, p, wi−1, q) then lk(wi+1) = C7(o,
wi, q,m, r, wi+2, n), lk(wi+2) = C6(wi+1, r, s, wi+3, t, n).

2. lk(wi) = C6(m,wi−1, n, o, wi+1, p) then lk(wi+1) = C7(q, wi+2, r, s, p, wi, o), lk(wi+2) = C7(s,
wi+1, o, q, t, wi+3, r), and if lk(wi) = C6(m,wi+1, n, o, wi−1, p) then lk(wi+1) = C7(q, wi+2, r, s,
n, wi,m), lk(wi+2) = C7(s, wi+1,m, q, t, wi+3, r).

Since M is map on finite vertices, if P (v1, v2, . . . , vl) is a maximal path (a path of maximum
length) of type Aα, α ∈ {1, 2, 3} in M then the path gives a cycle Q = Cl(v1, v2, . . . , vl) (see Lemma
4.1 in [14]). In other words:

Lemma 3.1.1 Let P (v1, v2, . . . , vl) be a maximal path in M of the type Aα, α ∈ {1, 2, 3}. Then
there is an edge vl-v1 in the underlying graph of M such that P (v1, v2, . . . , vl) ∪ {vl-v1} is a cycle
Q = Cl(v1, v2, . . . , vl).

In the above lemma, if the Q is obtained by a maximal path P (v1, v2, . . . , vl) of type A1 (resp.
A2 or A3), we call Q of type A1 (resp. A2 or A3). Let Q1, Q2 be two cycles of same type in M
such that E(Q1) ∩ E(Q2) 6= φ, where E(Qi) denotes the edge set of Qi for 1 ≤ i ≤ 2. Then by the
argument given for Lemma 4.2 in [14], we see easily that they are identical. That is:

Lemma 3.1.2 If Q1, Q2 are two cycles of type Aα, for a fixed α ∈ {1, 2, 3}, in M . Then, Q1 = Q2

if E(Q1) ∩ E(Q2) 6= φ.

For a cycle Q of type Aα, where α ∈ {1, 2, 3}, we show the following.

Lemma 3.1.3 If Q is a cycle of type Aα, for α ∈ {1, 2, 3}, in M then Q is non-contractible.

Proof. We prove it by contradiction. Suppose Q is a contractible cycle of type A1. Then Q is the
boundary of a 2-disk DQ. Let |V |, |E| and |F | denote the number of vertices, edges and faces of
DQ respectively. Suppose there are k = k1 + k2 inner vertices and l boundary vertices in DQ. Here
k1 and k2 denote the number of inner vertices with face-sequences (36) and (33, 42) respectively. By
Definition 3.1.1, we have two cases for |V |, |E| and |F | in DQ. In case when quadrangles are incident
with Q then |V | = l+k1+k2, |E| = 3l/2+6k1/2+5k2/2 and |F | = 2l/4+6k1/3+3k2/3+2k2/4, on
the other hand when triangles are incident with Q then |V | = l+k1+k2, |E| = 4l/2+6k1/2+5k2/2
and |F | = 3l/3 + 6k1/3 + 2k2/4 + 3k2/3. But for both the cases, we get |V | − |E| − |F | = 0. A
contradiction, as the Euler characteristic of a 2-disk is 1. Thus Q is non-contractible.

Let Q be a contractible cycle of type A2. Let DQ be a 2-disk with the boundary Q. Suppose
there are k = k1 + k2 inner vertices and l = l1 + l2 + l3 boundary vertices in DQ, where k1 and k2
denote the number of inner vertices with face-sequences (36) and (33, 42) respectively and l1, l2, l3
denote the number of boundary vertices of type (3, 4), (33) and (32, 4) respectively (by a boundary
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vertex v of type (3r, 4s) means DQ contains r triangles and s quadrangles consecutively incident
with v). Then |V | = l1 + l2 + l3 + k1 + k2, |E| = 3l1/2 + 4l2/2 + 4l3/2 + 6k1/2 + 5k2/2 and
|F | = l1/4 + l1/3 + 3l2/3 + 2l3/3 + l3/4 + 6k1/3 + 3k2/3 + 2k2/4. Note that l1 = l2 = l3, we get
|V | − |E| − |F | = 0, a contradiction. Thus Q is non-contractible.

Similarly we see, if Q is a cycle of type A3 then it is also non-contractible. Thus the proof. ✷

Let Q be a cycle of type Aα with the vertex set V (Q), for a fixed α ∈ {1, 2, 3} in M . Let
S denote the set of all the faces incident at v for all v ∈ V (Q). Then the geometric carrier SQ

(union of all the faces in S) is a cylinder, as Q is non-contractible (for example see Figure 3.1.3
and 3.1.4). By Lemma 3.1.2, it has two disjoint or identical boundary cycles, say Q1 and Q2. Let
∂SQ = {Q1, Q2}, where ∂SQ denote the boundary of SQ. Then we show:

Lemma 3.1.4 If Q be a cycle of type Aα, α ∈ {1, 2, 3}, such that ∂SQ = {Q1, Q2}. Then (i) Q,
Q1 and Q2 are of same type, (ii) length(Q) = length(Q1) = length(Q2).

Proof. Let Q be a cycle of type A1 such that SQ is a cylinder with ∂SQ = {Q1, Q2}. Consider the
faces which are incident with both Q and Qn for a fixed n ∈ {1, 2}. Without loss of generality let
Qn = Q1. Now depending on Q we have two cases: (i) if the faces incident with both Q and Q1

are quadrangles then the faces lying on the other side of Q1 must be triangles and (ii) if the faces
incident with both Q and Q1 are triangles then the faces on the other side of Q1 must be either
triangles or quadrangles. Following Definition 3.1.1, we see for both the cases, Q1 is of type A1 and
hence Q2 is also of type A1.

Now let Q = Cl(v1, . . . , vl), Q1 = Cl1(u1, . . . , ul1) and Q2 = Cl2(w1, . . . , wl2). We show that
l = l1 = l2. Suppose l 6= l1 6= l2. Without loss of generality let l < l1 < l2. By Definition 3.1.1, the
face-sequence of v1, v2, . . . , vl−1, vl will be same through out the cycle. Since l < l1, so, the lk(vl)
contains the vertices ul, ul+i, and wl for some i > 0. This shows that the face-sequences of vl and
vl−1 are not same. A contradiction. Therefore l = l1 = l2.

Proceeding similarly, we get the above result for a cycles of type A2 and A3. ✷

Let Q1 and Q2 be two same type cycles in a DSEM M on the torus. We say that cycles Q1

and Q2 are homologous if there is a cylinder whose boundary is {Q1, Q2}, see [14]. Thus in Lemma
3.1.4, the cycles Q, Q1 and Q2 are homologous to each other.

Now we give the notion of a planar representation, denoted as M(i, j, k) representation, for a
DSEM M (as defined for semi-equivelar maps in [14]). This is obtained by cutting M along any
two non-homologous cycles.

An M(i, j, k) representation: Let M be a DSEM of type [36 : 33.42]1 with the vertex set
V (M). Let u ∈ V (M) and Qα be cycles of type Aα through u, where α ∈ {1, 2, 3}. Let
Q1 = Ci(u1, u2, . . . , ui). We cut M first along the cycle Q1. We get a cylinder, say R1, bounded
by identical cycle Q1. We say that a cycle is horizontal if it is Q1 or homologous to Q1. Then we
say that a cycle is vertical if it is Qα or homologous to Qα for α ∈ {2, 3}. In R1, starting from the
vertex u, make another cut along the path P ⊂ Q3, until it reaches Q1 again for the first time. As
a result, we unfold the torus into a planer representation, say R2.

Claim. The representation R2 is connected.
Since Q1 is non-contractible cycle, R1 is connected. Suppose that R2 is disconnected. This

means there is a 2-disk DQ with boundary cycle Q = P1∪P ′
1 = P (am, . . . , an) ∪ P (bs, . . . , bt) where

P1 ⊂ Q3, P
′
1 ⊂ Q1, an = bs and am = bt. Let △ and ✷ denote triangular and quadrangular faces

respectively. Now in the first case when quadrangular faces are incident with P ′
1 in DQ and ✷m,

△m,1, △m,2, △m,3, △m,4, ✷m+1, △m+1,1, △m+1,2, △m+1,3, △m+1,4, . . . ,△n−1,1, △n−1,2, △n−1,3,
△n−1,4, ✷n are incident with P1 in DQ then as in Lemma 3.1.3, we calculate |V |, |E| and |F | of DQ

and we get |V | − |E| + |F | = 0. On the other hand, if triangular faces are incident with P ′
1 in DQ

then again calculating |V |, |E| and |F | of DQ, we get |V | − |E| + |F | = 0. This is not possible as
the Euler characteristic of the 2-disk DQ is 1. So, R2 is connected.
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Without loss of generality, suppose that the quadrangular faces are incident on Q1. In R2, let
there are j cycles which are homologous to Q1 along the path P ⊂ Q3. Since length(Q1) = i and
the number of horizontal cycles along P is j, as shown in Figure 3.1.2. So, we denote R2 by (i, j)
representation. Now to obtain M from its (i, j) representation one has to go in reverse way, i.e.,
identify both the vertical sides and horizontal sides along the vertices, but observe that identification
of the horizontal sides may need some shifting, as shown in Figure 3.1.2. Let k be the shifting, i.e.,
uk+1 be the first vertex in the upper horizontal cycle. This gives a planar representation of M
(corresponding to the (i, j) representation) also called M(i, j, k) representation of M .

Lemma 3.1.5 In M(i, j, k), A1 type cycles have unique length and A2 type (or A3 type) cycles have
at most two different lengths.

Proof. Consider an M(i, j, k) representation of a DSEM M of type [36 : 33.42]1 with the vertex
set V (M). Let Q1 be an A1 type cycle. Consider a cylinder SQ1 which is defined by Q1. Let
∂SQ1 = {Q0, Q2}. By Lemma 3.1.4, the cycles Q0, Q1 and Q2 are homologous and length(Q0)
= length(Q1) = length(Q2). Now consider the cycle Q2 and repeat the above procedure. In this
process, let Qm indicate a cycle at mth step such that ∂SQm = {Qm−1, Qm+1} and length(Qm−1)
= length(Qm) = length(Qm+1). Since V (M) is finite, this process terminates after finite number of
steps. By the construction of M(i, j, k), shown in Figure 3.1.2, the process stops after j+1 number
of steps, i.e., Q0 appears again. Thus, the cycles Qr, Qs are homologous for every 1 ≤ r, s ≤ j and
j
⋃

m=1
V (Qm) = V (M). Note that in M(i, j, k) there is only one cycle of type A1 through any vertex.

As a result, Q1, Q2, . . . , Qj are the only type A1 cycles in M . Since these cycles are homologous and
length(Q1) = length(Qr) for all 1 ≤ r ≤ j. Therefore, M has A1 type cycles with unique length.

Let Q′
1, Q

′′
1 be the cycles of type A2 and A3 respectively. Now repeating the above process for

the cycles Q′
1 and Q′′

1 , we see that all the A2 type cycles have same length say l1 and all the A3

type cycles have same length say l2. Observe that Q′
1 and Q′′

1 define same type cycles as these are
mirror image of each other. So, the map M contains the cycles of type A2 (or type A3) of lengths
l1 and l2. Therefore, M has A2 type (or A3 type) cycles with at most two different lengths. ✷

Now we define a cycle of new type (other than A1, A2 and A3) as follows: Suppose that
a DSEM M of type [36 : 33.42]1 has an M(i, j, k) representation. Let Qlh = Ci(x1, x2, . . . , xi)
and Quh = Ci(xk+1, xk+2, . . . , xk) be the lower and upper horizontal cycles of type A1 in the
representation respectively. Define two paths P1 = P (xk+1, y1, y2, . . . , yα, xk1) of type A2 and P ′

1 =
P (xk+1, z1, z2, . . . , zβ , xk2) of type A3 through xk+1 in the representation, where xk1 , xk2 ∈ V (Quh).
Note that, the paths P1 and P ′

1 are not parts of horizontal cycles. Consider the paths P2 =
P (xk1 , . . . , xk+1) and P ′

2 = P (xk2 , . . . , xk+1) in Quh such that P2 ∪P ′
2 ⊆ Quh. Let Q4,1 = P1 ∪P2 =

Cγ(xk+1, y1, y2, . . . , yα, xk1 , . . . , xk+1) and Q4,2 = P ′
1 ∪ P ′

2 = Cγ′ (xk+1, z1, z2, . . . , zβ , xk2 , . . . , xk+1),

where γ and γ
′

are lengths of Q4,1 and Q4,2 respectively. Define a cycle Q4 of new type, say A4, as:

Q4 =

{

Q4,1, if γ(Q4,1) ≤ γ
′

(Q4,2)

Q4,2, if γ(Q4,1) > γ
′

(Q4,2)
(1)

From (1), clearly the length(Q4) = min{length(P1) + length(P2), length (P ′
1) + length(P ′

2)} =
min{k + j, (i − k − 2j/3)(mod i) + j}. Here we denote (i− k − 2j/3) for (i− k − 2j/3)(mod i).

From the notion of M(i, j, k) representation, we prove the following lemma.

Lemma 3.1.6 Let M be a DSEM of type [36 : 33.42]1. Then M admits an M(i, j, k) representation
if and only if the following holds: (i) i ≥ 3 and j = 3m, where m ∈ N, (ii) ij ≥ 9, (iii) 0 ≤ k ≤ i−1.

Proof. Let M be a DSEM of type [36 : 33.42]1 with n vertices. By definition M(i, j, k) of M has
j number of A1 type disjoint horizontal cycles of length i. Since all the vertices of M lie in these
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cycles, the number of vertices in M is n = ij. Clearly if i ≤ 2, M is not a map. So i ≥ 3. If j = 1
then M is not a map and if j = 2 then M has no vertices with face-sequence (36). If j = 3m+1 or
3m+ 2, where m ∈ N, then 2|V(36)| 6= |V(33,42)|. So j = 3m for m ∈ N. Thus n = ij ≥ 9. Since the
length of the horizontal cycle is i, we get 0 ≤ k ≤ i− 1. Converse is obvious by Figure 3.1.2. This
completes the proof. ✷

Let Mt, t = 1, 2, be DSEMs of type [36 : 33.42]1 on nt number of vertices with n1 = n2. Let
Mt(it, jt, kt) be representation of Mt. Let Qt,α be cycles of type Aα and lt,α = length of the cycle
of type Aα, α = 1, 2, 3, 4, in Mt(it, jt, kt). We say that Mt(it, jt, kt) has cycle-type (lt,1, lt,2, lt,3, lt,4)
if lt,2 ≤ lt,3 or (lt,1, lt,3, lt,2, lt,4) if lt,3 < lt,2. Now, we show the following.

Lemma 3.1.7 The DSEMs M1
∼= M2 iff they have same cycle-type.

Proof. Let M1 and M2 be two DSEMs. Suppose the maps have same cycle-type. Then l1,1 =
l2,1, {l1,2, l1,3} = {l2,2, l2,3} and l1,4 = l2,4. To show that M1

∼= M2, it is enough to show that
M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Claim. M1(i1, j1, k1) ∼= M2(i2, j2, k2).

By the definition, Mt(it, jt, kt) has jt horizontal cycles of type A1, say Q0 = Ci1(w0,0, w0,1,
. . . , w0,i1−1), Q1 = Ci1(w1,0, w1,1, . . . , w1,i1−1), . . . , Qj1−1 = Ci1(wj1−1,0, wj1−1,1, . . . , wj1−1,i1−1) in
M1(i1, j1, k1) and Q′

0 = Ci2(x0,0, x0,1, . . . , x0,i2−1), Q
′
1 = Ci2(x1,0, x1,1, . . . , x1,i2−1), . . . , Q

′
j2−1 =

Ci2(xj2−1,0, xj2−1,1, . . . , xj2−1,i2−1) in M2(i2, j2, k2). Then we have the following cases.

Case 1: If (i1, j1, k1) = (i2, j2, k2) then i1 = i2, j1 = j2, k1 = k2. Define an isomorphism f :
V (M1(i1, j1, k1)) → V (M2(i2, j2, k2)) such that f(wu,v) = xu,v for 0 ≤ u ≤ j1−1 and 0 ≤ v ≤ i1−1.
So, M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Case 2: If i1 6= i2 then it contradicts the fact that l1,1 = l2,1. Thus i1 = i2.

Case 3: If j1 6= j2 then n1 = i1j1 6= i2j2 = n2 as i1 = i2. A contradiction, as n1 = n2. So, j1 = j2.

Case 4: If k1 6= k2. Since l1,4 = l2,4, length(Q1,4) = length(Q2,4). This means min{k1 +
j1, i1 − k1 + j1/3} = min{k2 + j2, i2 − k2 + j2/3}. Since i1 = i2, j1 = j2 and k1 6= k2, we
get k1 + j1 6= k2 + j2 and i1 − k1 + j1/3 6= i2 − k2 + j2/3. This gives that k1 + j1 = i2 −
k2 + j2/3 = i1 − k2 + j1/3, as i1 = i2 and j1 = j2. That is, k2 = i1 − k1 − 2j1/3. We iden-
tify M2(i2, j2, k2) along the vertical boundary P (x0,0, x1,0, . . . , xj2−1,0, x0,k2) and then cut along
the path P (x0,0, x1,0, x2,1, x3,2, . . . , xj2−1,2j2/3−1, x0,k2+2j2/3) of type A2 through vertex x0,0. This
gives another representation of M2, say R, with a map f ′ : V (M2(i2, j2, k2)) → V (R) such that
f ′(xu,v) = xu,(i2−v+⌊2u/3⌋)(mod i2) for 0 ≤ u ≤ j2−1 and 0 ≤ v ≤ i2−1. In R the lower and upper hori-
zontal cycles are Q′ = Ci2(x0,0, x0,i2−1, x0,i2−2, . . . , x0,1) and Q′′ = Ci2(x0,k2+2j2/3, x0,k2+2j2/3−1, . . . ,
x0,k2+2j2/3+1) respectively. The path P (x0,0, x0,i2−1, x0,i2−2, . . . , x0,k2+2j2/3) in Q′ has length i2−k2−
2j2/3. Clearly R has j2 number of horizontal cycles of length i2. So, R = M2(i2, j2, i2−k2−2j2/3).
Note that i2 − k2 − 2j2/3 = i2 − (i1 − k1 − 2j1/3) − 2j2/3 = k1, as i1 = i2 and j1 = j2. So,
M2(i2, j2, i2 − k2 − 2j2/3) = M1(i1, j1, k1). Therefore by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2). So, by
Cases 1-4, the claim follows. Hence, M1

∼= M2.
Conversely, let M1

∼= M2 by an isomorphism f . Let Q1,α and Q2,α be cycles of type Aα for
α = 1, 2, 3, 4 in M1 and M2 respectively. Let f : V (M1) → V (M2) be such that f(Q1,α) = Q2,α.
Since f is an isomorphism, length(Q1,α) = length(f(Q1,α)) = length(Q2,α). Hence, M1 and M2

have the same cycle-type. This completes the proof. ✷

By Lemma 3.1.6 and 3.1.7, one can compute and classify DSEMs of type [36 : 33.42] for different
number of vertices |V (M)|. A tabular list of the DSEMs for first four admissible values of |V (M)|,
i.e., |V (M)| = 9, 12, 15, 18 is given in Table 3.1. For |V (M)| = 12, the computation is illustrated
explicitly in the following example.

Example 3.1.1 Let M be a DSEM of type [36 : 33.42]1 with n vertices. Then M has an M(i, j, k)
representation, with n = ij ≥ 9, j = 3m, where m ∈ N and 0 ≤ k ≤ i− 1. If n = 12 and j = 3, we
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have, i = 4 and k = 0, 1, 2, 3 by Lemma 3.1.6. So, M(i, j, k) = M(4, 3, 0),M(4, 3, 1),M(4, 3, 2) and
M(4, 3, 3), see Figures 3.1.5, 3.1.6, 3.1.7, 3.1.8, respectively. In M(4, 3, 0), Q1,1 = C4(v1, v2, v3, v4)
is A1 type cycle, Q1,2 = C6(v1, v5, u2, v3, v7, u4) and Q1,3 = C3(v1, v5, u1) are two A2 type cycles
and Q1,4 = C3(v1, v5, u1) is A4 type cycle. In M(4, 3, 1), Q2,1 = C4(w1, w2, w3, w4) is A1 type
cycle, Q2,2 = C12(w1, w5, u2, w4, w8, u1, w3, w7, u4, w2, w6, u3) and Q2,3 = C12(w1, w5, u1, w2, w6,
u2, w3, w7, u3, w4, w8, u4) are two A2 type cycle and Q2,4 = C4(w2, w6, u3, w1) is A4 type cycle.
In M(4, 3, 2), Q3,1 = C4(x1, x2, x3, x4) is a cycle of type A1, Q3,2 = C3(x1, x5, u2) and Q3,3 =
C6(x1, x5, u1, x3, x7, u3) are two A2 type cycles and Q3,4 = C3(x3, x7, u4) is A4 type cycle. In
M(4, 3, 3), Q4,1 = C4(z1, z2, z3, z4) is A1 type cycle, Q4,2 = C12(z1, z5, u2, z2, z6, u3, z3, z7, u4, z4,
z8, u1) and Q4,3 = C12(z1, z5, u1, z4, z8, u4, z3, z7, u3, z2, z6, u2) are two A2 type cycles and Q4,4 =
C6(z4, z8, u1, z1, z2, z3) is A4 type cycle.

By Lemma 3.1.5, M has A1 type cycles with unique length and A2 type cycles with at most two
different lengths. Since length(Q1,4) 6= length(Qr,4) for r = 2, 4, M(4, 3, 0) ≇ M(4, 3, 1),M(4, 3, 3).
Also, M(4, 3, 1) ≇ M(4, 3, 2) as length(Q2,4) 6= length(Q3,4) and M(4, 3, 2) ≇ M(4, 3, 3) as length
(Q3,4) 6= length(Q4,4). Observe that, length(Q1,1) = length(Q3,1), {length(Q1,2), length(Q1,3)} =
{length(Q3,2), length(Q3,3)} and length(Q1,4) = length(Q4,4). Now identifying M(4, 3, 0) along the
vertical boundary and cutting along the path P (v1, v5, u2, v3) leads to Figure 3.1.9, i.e., M(4, 3, 2).
So, by Lemma 3.1.7, M(4, 3, 0) ∼= M(4, 3, 2). Thus, there are three DSEMs, up to isomorphism, of
type [36 : 33.42]1 with 12 vertices on the torus. These are M(4, 3, 0), M(4, 3, 1), M(4, 3, 3).

v1 v2 v3 v4 v1

v5 v6 v7 v8 v5

u1 u2 u3 u4 u1

v1 v2 v3 v4 v1

Figure 3.1.5: M(4, 3, 0)

w1 w2 w3 w4 w1

w5 w6 w7 w8 w5

u1 u2 u3 u4 u1

w2 w3 w4 w1 w2

Figure 3.1.6: M(4, 3, 1)

x1 x2 x3 x4 x1

x5 x6 x7 x8 x5

u1 u2 u3 u4 u1

x3 x4 x1 x2 x3

Figure 3.1.7: M(4, 3, 2)

z1 z2 z3 z4 z1

z5 z6 z7 z8 z5

u1 u2 u3 u4 u1

z4 z1 z2 z3 z4

Figure 3.1.8: (4, 3, 3)

x3 x2 x1 x4 x3

x7 x6 x5 x8 x7

u4 u3 u2 u1 u4

x3 x2 x1 x4 x3

Figure 3.1.9: M(4, 3, 0)

Table 3.1 : DSEMs of type [36 : 33.42]1 on the torus for |V (M)| ≤ 18

|V (M)| Isomorphic classes Length of cycles No of maps

9 M(3, 3, 0), M(3, 3, 1) (3, {3, 9}, 3) 2
M(3, 3, 2) (3, {9, 9}, 5)

12 M(4, 3, 0), M(4, 3, 2) (4, {3, 6}, 3) 3
M(4, 3, 1) (4, {12, 12}, 4)
M(4, 3, 3) (4, {12, 12}, 6)

15 M(5, 3, 0), M(5, 3, 3) (5, {3, 15}, 3) 3
M(5, 3, 1), M(5, 3, 2) (5, {15, 15}, 4)
M(5, 3, 4) (5, {15, 15}, 7)

18 M(6, 3, 0), M(6, 3, 4) (6, {3, 9}, 3) 6
M(6, 3, 1), M(6, 3, 3) (6, {6, 18}, 4)
M(6, 3, 2) (6, {9, 9}, 5)
M(6, 3, 5) (6, {18, 18}, 8)
M(3, 6, 0), M(3, 6, 2) (3, {6, 18}, 6)
M(3, 6, 1) (3, {18, 18}, 7)

In the subsequent subsections, we proceed in a similar way. For each type DSEM M with vertex
set |V (M)|, we construct all M(i, j, k) representations by defining suitable non-homologous cycles
and by finding admissible values of i, j, k ∈ N ∪ {0}. After that, we determine isomorphism maps
between their representations, if exist. This gives the exact number of representations, which are
maps, up to the isomorphism on that |V (M)|.
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3.2 DSEMs of type [36 : 33.42]2

Consider a DSEM M of type [36 : 33.42]2 with the vertex set V (M). Then the map M exists if
|V(36)| = |V(33,42)| (see [11]), where |V(36)| and |V(33,42)| are same as in Section 3.1. Now define the
following three types paths in M as follows.

Definition 3.2.1 Let P1 = P (. . . , yi−1, yi, yi+1, . . .) be a path in M . We say that P1 is of type B1

if all the triangles incident with an inner vertex yi lie on one side and all the quadrangles incident
with yi lie on the other side of the subpath P ′(yi−1, yi, yi+1) or every vertex of the path have face-
sequence (36), see Figure 3.2.1. If a boundary vertex of P1 is yj then there is an extended path say
P1e of P1 such that yj is an inner vertex of P1e .

B3 B2

B1

Figure 3.2.1: Paths of types B1, B2, B3

. . .. . .. . .

. . .. . .. . .

. . .. . .. . .

. . .. . .. . .

. . .. . .. . .

. . .. . .. . .

. . .. . .. . .

. . .. . .. . .

x1 x2 x3 x4 xk xk+1 xk+2 xk+3 xi−1 xi x1

y1 y2 y3 y4 yk yk+1 yk+2 yk+3 yi−1 yi y1

z1 z2 z3 z4 zk zk+1 zk+2 zk+3 zi−1 zi z1

w1 w2 w3 w4
wk wk+1 wk+2 wk+3

wi−1 wi w1

xk+1 xk+2 xk+3 xk+4 xi x1 x2 x3
xk−1 xk xk+1

Figure 3.2.2: M(i, 4, k) representation

Definition 3.2.2 Let P2 = P (. . . , zi−1, zi, zi+1, . . .) be a path in M such that zi, zi+1 are inner
vertices of P2 or an extended path of P2. We say that P2 is of type B2, see in Figure 3.2.1, if either
of the three conditions occur for each vertex of the path.

1. if lk(zi) = C7(m, zi−1,n, o, zi+1, p, q) then lk(zi+1) = C6(zi, o, r, zi+2, s, p), lk(zi+2) = C6(zi+1,
r, t, zi+3, u, s), lk(zi+3) = C7(v, zi+4,w, u, zi+2, t, x), and if lk(zi) = C7(m, zi−1,n, o, zi+1, p, q)
then lk(zi+1) = C6(zi, o, r, zi+2, s, p), lk(zi+2) = C6(zr+1, r, t, zi+3, u, s), lk(zi+3) = C7(v, zi+4,
w, u, zi+2, t, x).

2. if lk(zi) = C6(zi−1,m, n, zi+1, o, p) then lk(zi+1) = C6(zi, n, q, zi+2, r, o), lk(zi+2) = C7(s, zi+3,
t, r, zi+1, q, u), lk(zi+3) = C7(r, zi+2,u, s, zi+4, v, t), and if lk(zi) = C6(zi+1,m, n, zi−1, o, p),
then lk(zi+1) = C6(zi+2, t,m, zi, p, q), lk(zi+2) = C7(r, zi+3, s, t, zi+1, q, u), lk(zi+3) = C7(t,
zi+2,u, r, zi+4, v, s).

3. if lk(zi) = C6(zi−1,m, n, zi+1, o, p) then lk(zi+1) = C7(q, zi+2, r, o, zi, n, s), lk(zi+2) = C7(o,
zi+1, s, q, zi+3, t, r), lk(zi+3) = C6(zi+2, q, u, zi+4, v, t), and if lk(zi) = C6(zi+1,m, n, zi−1, o, p)
then lk(zi+1) = C7(q, zi+2, r,m, ui, p, s), lk(zi+2) = C7(m, zi+1, s, q, zi+3, t, r), lk(zi+3) =
C6(zi+2, q, u, zi+4, v, t).

Definition 3.2.3 Let P3 = P (. . . , wi−1, wi, wi+1, . . .) be a path in M such that wi, wi+1 are inner
vertices of P3 or an extended path of P3. We say that P3 is of type B3, see in Figure 3.2.1, if either
of the three conditions occur for each vertex of P3.

1. if lk(wi) = C7(m, wi−1,n, o, p, wi+1, q) then lk(wi+1) = C6(wi, p, r, wi+2, s, q), lk(wi+2) =
C6(wi+1, r, t, wi+3, u, s), lk(wi+3) = C7(v, wi+4,w, x, u, wi+2, t), and if lk(wi) = C7(m, wi+1,
n, o, p, wi−1, q) then lk(wi+1) = C7(o, wi, q,m, r, wi+2, n), lk(wi+2) = C6(wi+1, r, s, wi+3, t, n),
lk(wi+3) = C6(wi+2, s, u, wi+4, v, t).

2. if lk(wi) = C6(m,wi−1, n, o, wi+1, p) then lk(wi+1) = C6(wi, o, q, wi+2, r, p), lk(wi+2) = C7(s,
wi+3, t, u, r, wi+1, q), lk(wi+3) = C7(u, wi+2, q, s, v, wi+4, t), and if lk(wi) = C6(m,wi+1, n, o,
wi−1, p) then lk(wi+1) = C6(wi,m, q, wi+2, r, n), lk(wi+2) = C7(s, wi+3, t, u, r, wi+1, q), lk(wi+3

) = C7(u, wi+2, q, s, wi+4, t).
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3. if lk(wi) = C6(m,wi+1, n, o, wi−1, p) then lk(wi+1) = C7(q, wi+2, r, s, p, wi, o), lk(wi+2) =
C7(s, wi+1,o, q, t, wi+3, r), lk(wi+3) = C6(wi+2, t, u, wi+4, v, r), and if lk(wi) = C6(m,wi+1, n,
o, wi−1, p) then lk(wi+1) = C7(q, wi+2, r, s, n, wi,m), lk(wi+2) = C7(s, wi+1,m, q, t, wi+3, r),
lk(wi+3) = C6(wi+2, t, u, wi+4, v, r).

Consider a maximal path P (v1, v2, . . . , vi) of the type Bα, for α ∈ {1, 2, 3}. By Lemmas 3.1.1,
3.1.3, there is an edge vi-v1 in M such that P (v1, v2, . . . , vi) ∪ {vi-v1} is a non-contractible cycle
Q = Ci(v1, v2, . . . , vi). Observe that the cycles of type B2 and B3 define same type cycles since they
are mirror image of each other. By equation (1) of Section 3.1, there is a cycle of type B4 in M .
Let u ∈ V (M) and Qα be cycles of type Bα through u. As in Section 3.1, we define an M(i, j, k)
representation of M for some i, j, k. For this, we first cut M along the cycle Q1 and then cut it
along the cycle Q3. Without loss of generality, suppose qudarangular faces are incident with the
horizontal base cycle Q1, see for example M(i, 4, k) in Figure 3.2.2.

Lemma 3.2.1 The DSEM M of type [36 : 33.42]2 admits an M(i, j, k) representation iff the fol-
lowing holds: (i) i ≥ 3 and j = 4m, where m ∈ N, (ii) ij ≥ 12, (iii) 0 ≤ k ≤ i− 1.

Proof. Let M be the above type DSEM with n vertices. An M(i, j, k) of M has j number of B1

type disjoint horizontal cycles of length i. Since all the vertices of M lie in these cycles, the number
of vertices in M is n = ij. Clearly if i ≤ 2, M is not a map. So i ≥ 3. If j = 1 then M is not a map
and if j = 2 then M has no vertices with face-sequence (36). Also if j = 2m + 1 or 4m+ 2, where
m ∈ N, then we see that |V (33, 42)| 6= |V (36)|. So j = 4m for m ∈ N. Thus n = ij ≥ 12. Since the
length of the horizontal cycle is i, we get 0 ≤ k ≤ i− 1. This completes the proof. ✷

Let Mt, t = 1, 2, be DSEMs of type [36 : 33.42]2 on nt number of vertices and n1 = n2. Let
Mt(it, jt, kt) be a representation of Mt. Let Qt,α be cycles of type Bα and lt,α = length of the cycle
of type Bα, α = 1, 2, 3, 4, in Mt(it, jt, kt). We say Mt(it, jt, kt) has cycle-type (lt,1, lt,2, lt,3, lt,4) if
lt,2 ≤ lt,3 or (lt,1, lt,3, lt,2, lt,4) if lt,3 < lt,2. Now, we show the following.

Lemma 3.2.2 The DSEMs M1
∼= M2 iff they have same cycle-type.

Proof. Suppose M1 and M2 be two DSEMs of the type [36 : 33.42]2 with same number of vertices
such that they have same cycle-type. Then l1,1 = l2,1, {l1,2, l1,3} = {l2,2, l2,3} and l1,4 = l2,4. To
show M1

∼= M2, it is equivalent to show that M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Claim. M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Mt(it, jt, kt) has jt number of horizontal cycles of type B1, say, Q0 = Ci1(w0,0, w0,1, . . . , w0,i1−1),
Q1 = Ci1(w1,0, w1,1, . . . , w1,i1−1), . . . , Qj1−1 = Ci1(wj1−1,0, wj1−1,1, . . . , wj1−1,i1−1) in M1(i1, j1, k1)
and Q′

0 = Ci2(z0,0, z0,1, . . . , z0,i2−1), Q
′
1 = Ci2(z1,0, z1,1, . . . , z1,i2−1), . . . , Q

′
j2−1 = Ci2(zj2−1,0, zj2−1,1,

. . . , zj2−1,i2−1) in M2(i2, j2, k2). Then, we have the following cases.

Case 1: If (i1, j1, k1) = (i2, j2, k2) then i1 = i2, j1 = j2, k1 = k2. Define an isomorphism
f : V (M1(i1, j1, k1)) → V (M2(i2, j2, k2)) such that f(wu,v) = zu,v for 0 ≤ u ≤ j1 − 1 and 0 ≤ v ≤
i1 − 1. So by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Case 2: If i1 6= i2 then l1,1 6= l2,1, a contradiction. Thus i1 = i2.

Case 3: If j1 6= j2, then n1 = i1j1 6= i2j2 = n2, as i1 = i2. A contradiction. So, j1 = j2.

Case 4: If k1 6= k2, by assumption, l1,4 = l2,4, length(Q1,4) = length(Q2,4). This means min{k1 +
j1, i1 − k1 + j1/4} = min{k2 + j2, i2 − k2 + j2/4}. Since i1 = i2, j1 = j2 and k1 6= k2, we see
k1 + j1 6= k2 + j2 and i1 − k1 + j1/4 6= i2 − k2 + j2/4. This gives that k1 + j1 = i2 − k2 +
j2/4 = i1 − k2 + j1/4 as i1 = i2 and j1 = j2. That is, k2 = i1 − k1 − 3j1/4. Now identify
M2(i2, j2, k2) along the vertical boundary P (z0,0, z1,0, z2,0, . . . , zj2−1,0, z0,k2) and then cut along the
path P (z0,0, z1,0, z2,1, z3,0, . . . , zj2−1,3j2/4−1, z0,k2+3j2/4) of type B2 through vertex z0,0. This gives
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another representation of M2, say R, with a map f ′ : V (M2(i2, j2, k2)) → V (R) such that f ′(zu,v) =
zu,(i2−v+⌊3u/4⌋)(mod i2) for 0 ≤ u ≤ j2−1 and 0 ≤ v ≤ i2−1. The lower and upper horizontal cycles of
R are Q′ = Ci2(z0,0, z0,i2−1, z0,i2−2, . . . , z0,1) and Q′′ = Ci2(z0,k2+3j2/4, z0,k2+3j2/4−1, . . . , z0,k2+3j2/4+1

) respectively. The path P (z0,0, z0,i2−1, z0,i2−2, . . . , z0,k2+3j2/4) in Q′ has length i2 − k2 − 3j2/4.
Note that R has j2 number of horizontal cycle of length i2. So, R = M2(i2, j2, i2 − k2 − 3j2/4).
Now i2 − k2 − 3j2/4 = i2 − (i1 − k1 − 3j1/4) − 3j2/4 = k1 as i2 = i1 and j2 = j1. Thus,
(i2, j2, i2 − k2 − 3j2/4)) = (i1, j1, k1) and hence by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2). By cases 1-4,
claim follows and therefore M1

∼= M2.

Suppose M1
∼= M2. Proceeding similarly as in Lemma 3.1.7, we get l1,1 = l2,1, {l1,2, l1,3} =

{l2,2, l2,3} and l1,4 = l2,4. Hence, M1 and M2 have same cycle-type. ✷

Now doing the computation for the first four admissible values of |V (M)|, we get Table 3.2. For
|V (M)| = 12, we illustrate the computation as follows.

Example 3.2.1 Let M be a DSEM of type [36 : 33.42]2 with 12 vertices on the torus. By
Lemma 3.2.1, M has three M(i, j, k) representation, namely, M(3, 4, 0),M(3, 4, 1) and M(3, 4, 2),
see Figures 3.2.3, 3.2.4, 3.2.5 respectively. In M(3, 4, 0), Q1,1 = C3(v1, v2, v3) is a B1 type cy-
cle, Q1,2 = C4(v1, v4, u2, u6) and Q1,3 = C4(v1, v4, u1, u4) are two B2 type cycles and Q1,4 =
C4(v1, v4, u1, u4) is a B4 type cycle. In M(3, 4, 1), Q2,1 = C3(w1, w2, w3) is a B1 type cycle,
Q2,2 = C12(w1, w4, u2, u6, w2, w5, u3, u4, w3, w6, u1, u5) and Q2,3 = C12(w1, w4, u1, u4, w2, w5, u2, u5,
w3, w6, u3, u6) are two B2 type cycles and Q2,4 = C5(w2, w5, u2, u5, w3) is a B4 type cycles. In
M(3, 4, 2), Q3,1 = C3(x1, x2, x3) is a B1 type cycle, Q3,2 = C12(x1, x4, u2, u6, x3, x6, u1, u5, x2, x5,
u3, u4) and Q3,3 = C12(x1, x4, u1, u4, x3, x6, u3, u6, x2, x5, u2, u5) are B2 type cycles and Q3,4 =
C5(x3, x6, u1, u5, x2) is a B4 type cycle.

In M(i, j, k), observe that B1 type cycles have the same length and B2 type cycles have at
most two different lengths. Since length(Q1,4) 6= length(Qr,4) for r = 2, 3, M(3, 4, 0) ≇ M(3, 4, 1),
M(3, 4, 2). Observe that, length (Q2,1) = length(Q3,1), {length(Q2,2), length(Q2,3)} = {length(Q3,2),
length(Q3,3)} and length(Q2,4) = length(Q3,4). Now cutting M(3, 4, 1) along the path P (w2, w5, u3,
u4, w3) and identifying along the path P (w1, w4, u1, u4, w2), leads to Figure 3.2.6, i.e., M(3, 4, 2).
By Lemma 3.2.2, M(3, 4, 1) ∼= M(3, 4, 2). Therefore, there are two DSEMs of type [36 : 33.42]2 with
12 vertices on the torus upto isomorphism.

v1 v2 v3 v1

v4 v5 v6 v4

u1 u2 u3 u1

u4 u5 u6 u4

v1 v2 v3 v1

Figure 3.2.3 : M(3, 4, 0)

w1 w2 w3 w1

w4 w5 w6 w4

u1 u2 u3 u1

u4 u5 u6 u4

w2 w3 w1 w2

Figure 3.2.4 : M(3, 4, 1)

x1 x2 x3 x1

x4 x5 x6 x4

u1 u2 u3 u1

u4 u5 u6 u4

x3 x1 x2 x3

Figure 3.2.5 : M(3, 4, 2)

w2 w1 w3 w2

w5 w4 w6 w5

u3 u2 u1 u3

u4 u6 u5 u4

w3 w2 w1 w3

Figure 3.2.6 : M(3, 4, 2)

Table 3.2 : DSEMs of type [36 : 33.42]2 on the torus for |V (M)| ≤ 24
|V (M)| Isomorphic classes Length of cycles No. of maps

12 M(3, 4, 0) (3, {4, 4}, 4) 2
M(3, 4, 1), M(3, 4, 2) (3, {12, 12}, 5)

16 M(4, 4, 0), M(4, 4, 1) (4, {4, 16}, 4) 2
M(4, 4, 2), M(4, 4, 3) (4, {8, 16}, 6)

20 M(5, 4, 0), M(5, 4, 2) (5, {4, 20}, 4) 3
M(5, 4, 3), M(5, 4, 4) (5, {20, 20}, 7)
M(5, 4, 1) (5, {20, 20}, 5)
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24 M(6, 4, 0), M(6, 4, 3) (6, {4, 8}, 4) 5
M(6, 4, 1), M(6, 4, 2) (6, {12, 24}, 5)
M(6, 4, 4), M(6, 4, 5) (6, {12, 24}, 8)
M(3, 8, 0) (3, {8, 8}, 8)
M(3, 8, 1), M(3, 8, 2) (3, {24, 24}, 9)

3.3 DSEMs of type [33.42 : 44]1

Consider a DSEM M of type [33 : 42.44]1 with the vertex set V (M). By [11], we get |V(33,42)| =
2|V(44)|, where |V(33,42)| and |V(44)| denote the cardinality of vertex sets V(33,42) and V(44) respectively.
Define the following three types of paths in M as follows.

Definition 3.3.1 Consider a path P1 = P (. . . , yi−1, yi, yi+1, . . .) in M . We say P1 is of type X1

if all the triangles incident with an inner vertex yi lie on one side and all the quadrangles incident
with yi lie on the other side of the subpath P ′(yi−1, yi, yi+1) or every vertices of the path have
face-sequence (44), see in Figure 3.3.1. If a boundary vertex of P1 is yj then there is an extended
path say P1e of P1 such that yj is an inner vertex of P1e .

Definition 3.3.2 Consider a path P2 = P (. . . , zi−1, zi, zi+1, . . .) in M such that zi, zi+1 are inner
vertices of P2 or an extended path of P2. We say that P2 is of type X2, see in Figure 3.3.1, if either
of the two conditions occur for each vertex of the path.

1. if lk(zi) = C7(m, zi−1,n, o, zi+1, p, q) then lk(zi+1) = C7(r, zi+2, s, p, zi, o, t), lk(zi+2) =
C8(u, zi+3,v, s,p, zi+1, t, r), and if lk(zi) = C7(m, zi+1,n, o, zi−1, p, q) then lk(zi+1) = C8(o, zi,
q,m, r, zi+2, s, n), lk(zi+2) = C7(n, zi+1,m, r, zi+3, t, s).

2. if lk(zi) = C8(m, zi−1,n, o,p, zi+1, q, r) then lk(zi+1) = C7(r, zi,o, p, zi+2, s, q), lk(zi+2) =
C7(t, zi+3,u, s, zi+1, p, v), and if lk(zi) = C8(m, zi+1,n, o,p, zi−1, q, r) then lk(zi+1) = C7(o, zi,
r,m, zi+2, s, n), lk(zi+2) = C7(t, zi+3,u, s, zi+1,m, v).

Definition 3.3.3 Consider a path P3 = P (. . . , wi−1, wi, wi+1, . . .) in M such that wi, wi+1 are inner
vertices of P3 or an extended path of P3. We say that P3 is of type X3, see in Figure 3.3.1, if either
of the two conditions occur for each vertex of the path.

1. if lk(wi) = C7(m, wi−1,n, o, p, wi+1, q) then lk(wi+1) = C7(r, wi+2, s, t, q, wi, p), lk(wi+2) =
C8(t, wi+1,p, r,u, wi+3,v, s), and if lk(wi) = C7(m, wi+1,n, o, p, wi−1, q) then lk(wi+1) =
C8(o, wi, q,m, r, wi+2, s, n), lk(wi+2) = C7(n, wi+1,m, r, t, wi+3, s).

2. if lk(wi) = C8(m, wi−1,n, o,p, wi+1, q, r) then lk(wi+1) = C7(r, wi,o, p, s, wi+2, q), lk(wi+2) =
C7(t, wi+3,w, v, q, wi+1, s), and if lk(wi) = C8(m, wi+1,n, o,p, wi−1, q, r) then lk(wi+1) =
C7(o, wi, r,m, s, wi+2, n), lk(wi+2) = C7(t, wi+3,w, v, n, wi+1, s).

X3 X2

X1

X1

Figure 3.3.1: Paths of types X1, X2, X3

v1 v2 v3 v4 vk vk+1 vk+2 vk+3 vi−2 vi v1

w1 w2 w3 w4 wk wk+1 wk+2 wk+3 wi−2 wi w1

x1 x2 x3 x4 xk xk+1 xk+2 xk+3
xi−1 xi x1

vk+1 vk+2 vk+3 vk+4 vi v1 v2 v3 vk−1 vk vk+1

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

Figure 3.3.2: M(i, 3, k)

As in Section 3.1, for a maximal path P of the type Xα, α ∈ {1, 2, 3} there is an edge e in M
such that P ∪ e is a non-contractible cycle of respective type. The cycles of types X2 and X3 define
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same type of cycles as they are mirror image of each other. Following equation (1) of section 3.1,
there is a cycle of type X4 in M . As in Section 3.1, we define an M(i, j, k) representation for M for
some i, j, k. See for example M(i, 3, k) in Figure 3.3.2.

Lemma 3.3.1 The DSEM M of type [33.42 : 44]1 admits an M(i, j, k)-representation iff the fol-
lowing holds: (i) i ≥ 3 and j = 3m, where m ∈ N, (ii) ij ≥ 9, (iii) 0 ≤ k ≤ i− 1.

Proof. Let M be a DSEM of type [33.42 : 44]1 with n vertices. Observe that the map exists if
|V (33, 42)| = 2|V (44)|. Now proceeding, as in Lemma 3.1.6, we get all possible values of i, j and k
of M(i, j, k). Thus the proof. ✷

For t = 1, 2, let Mt be DSEMs of type [33.42 : 44]1 on nt number of vertices with n1 = n2. Let
Mt(it, jt, kt) be a representation of Mt and Qt,α be cycles of type Xα, α = 1, 2, 3, 4. If lt,α = length
of the cycle of type Xα in Mt(it, jt, kt) then we say that Mt(it, jt, kt) has cycle-type (lt,1, lt,2, lt,3, lt,4)
if lt,2 ≤ lt,3 or (lt,1, lt,3, lt,2, lt,4) if lt,3 < lt,2. Now, we show the following lemma.

Lemma 3.3.2 The DSEMs M1
∼= M2 iff they have same cycle-type.

Proof. Suppose M1 and M2 be two DSEMs of the type [33.42 : 44]1 with same cardinality such
that they have same cycle-type. This means a1,1 = a2,1, {l1,2, l1,3} = {l2,2, l2,3} and l1,4 = l2,4.

Claim. M1(i1, j1, k1) ∼= M2(i2, j2, k2).

By the definition, Mt(it, jt, kt) has jt number of X1 type disjoint horizontal cycles of length it, say,
Q0 = Ci1(w0,0, w0,1, . . . , w0,i1−1), Q1 = Ci1(w1,0, w1,1, . . . , w1,i1−1), . . . , Qj1−1 = Ci1(wj1−1,0, wj1−1,1,
. . . , wj1−1,i1−1) in M1(i1, j1, k1) and Q′

0 = Ci2(z0,0, z0,1, . . . , z0,i2−1), Q′
1 = Ci2(z1,0, z1,1, . . . ,

z1,i2−1), . . . , Q
′
j2−1 = Ci2(zj2−1,0, zj2−1,1, . . . , zj2−1,i2−1) in M2(i2, j2, k2). Then,

Case 1: If (i1, j1, k1) = (i2, j2, k2) then i1 = i2, j1 = j2, k1 = k2. Define an isomorphism f :
V (M1(i1, j1, k1)) → V (M2(i2, j2, k2)) such that f(wu,v) = zu,v for 0 ≤ u ≤ j1−1 and 0 ≤ v ≤ i1−1.
So by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Case 2: If i1 6= i2 then contradicting the fact that l1,1 = l2,1. Thus i1 = i2.

Case 3: If j1 6= j2, it implies that n1 = i1j1 6= n2 = i2j2 as i1 = i2. A contradiction. So, j1 = j2.

Case 4: If k1 6= k2 then by l1,4 = l2,4 we see length(Q1,4) = length(Q2,4). This means min{k1 +
j1, j1 + (i1 − k1 − j1/3)} = min{k2 + j2, j2 + (i2 − k2 − j2/3)}. Since i1 = i2, j1 = j2 and k1 6= k2,
k1 + j1 6= k2 + j2 and j1 + (i1 − k1 − j1/3) 6= j2 + (i2 − k2 − j2/3). This implies k1 + j1 =
i2 − k2 − j2/3 + j2 = i1 − k2 + 2j1/3 as i1 = i2 and j1 = j2. That is, k2 = i1 − k1 − j1/3. Now
identify M2(i2, j2, k2) along the vertical boundary P (z0,0, z1,0, . . . , zj2−1,0, z0,k2) and then cut along
the path P (z0,0, z1,0, z2,0, z3,1, . . . , zj2−1,j2/3−1, z0,k2+j2/3) of type X2 through vertex z0,0. This gives
another representation of M2, say R, with a map f ′ : V (M2(i2, j2, k2)) → V (R) such that f ′(zu,v) =
zu,(i2−v+⌊t/3⌋)(mod i2) for 0 ≤ u ≤ j2−1 and 0 ≤ v ≤ i2−1. In R the lower and upper horizontal cycles
are Q′ = Ci2(z0,0, z0,i2−1, z0,i2−2, . . . , z0,1) and Q′′ = Ci2(z0,k2+j2/3, z0,k2+j2/3−1, . . . , z0,k2+j2/3+1)
respectively. The path P (z0,0, z0,i2−1, z0,i2−2, . . . , z0,k2+j2/3) in Q′ has length i2 − k2 − j2/3. Note
that R has j2 number of horizontal cycles of length i2. So, R = M2(i2, j2, i2− k2− j2/3). Note that
i2 − k2 − j2/3 = i2 − (i1 − k1 − j1/3)− j2/3 = k1 as i2 = i1, j2 = j1. Thus, (i2, j2, i2 − k2 − j2/3) =
(i1, j1, k1). Therefore, M1(i1, j1, k1) ∼= M2(i2, j2, k2). So the claim follows. Hence, M1

∼= M2.

The converse part follows from the converse part of Lemma 3.1.7. This completes the proof. ✷

Now computing the DSEMs for the first four admissible values of |V (M)|, we get Table 3.3. We
illustrate this computation below for |V (M)| = 9.

Example 3.3.1 Let M be a DSEM of type [33.42 : 44]1 with 9 vertices on the torus. By Lemma
3.3.1, M has three M(i, j, k) representation, namely, M(3, 3, 0),M(3, 3, 1) and M(3, 3, 2), see Fig-
ures 3.3.3, 3.3.4, 3.3.5 respectively. In M(3, 3, 0), Q1,1 = C3(x1, x2, x3) is a X1 type cycle, Q1,2 =
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C9(x1, x4, x7, x2, x5, x8, x3, x6, x9) and Q1,3 = C3(x1, x4, x7) are X2 type cycles and Q1,4 = C3(x1, x4,
x7) is a X4 type cycle. In M(3, 3, 1), Q2,1 = C3(y1, y2, y3) is a X1 type cycle, Q2,2 = C9(y1, y4, y7, y3,
y6, y9, y2, y5, y8) and Q2,3 = C9(y1, y4, y7, y2, y5, y8, y3, y6, y9) are X2 type cycles and Q2,4 = C4(y2,
y5, y8, y1) is a X4 type cycle. In M(3, 3, 2), Q3,1 = C3(z1, z2, z3) is a X1 type cycle, Q3,2 =
C3(z1, z4, z7) and Q3,3 = C9(z1, z4, z7, z3, z6, z9, z2, z5, z8) are X2 type cycle and Q3,4 = C3(z3, z6, z9)
is a X4 type cycle.

Observe that type X1 cycles have the same length and type X2 cycles have at most two different
lengths. Since length(Q2,4) 6= length(Qr,4) for r = 1, 3, M(3, 3, 1) ≇ M(3, 3, 0),M(3, 3, 2). Observe
that, length (Q1,1) = length(Q3,1), {length(Q1,2), length(Q1,3)} = { length(Q3,2), length(Q3,3)} and
length(Q1,4) =length(Q3,4). Now identifying the vertical boundary of M(3, 3, 0) and cutting along
the path P (x1, x4, x7, x2) leads to Figure 3.3.6, i.e., M(3, 3, 2). By the isomorphism map define in
Lemma 3.3.2, M(3, 3, 0) ∼= M(3, 3, 2). Therefore, there are two DSEMs of type [33.42 : 44]1 with 9
vertices on the torus upto isomorphism.

x1 x2 x3 x1

x4 x5 x6 x4

x7 x8 x9 x7

x1 x2 x3 x1

Figure 3.3.3: M(3, 3, 0)

y1 y2 y3 y1

y4 y5 y6 y4

y7 y8 y9 y7

y2 y3 y1 y2

Figure 3.3.4: M(3, 3, 1)

z1 z2 z3 z1

z4 z5 z6 z4

z7 z8 z9 z1

z3 z1 z2 z3

Figure 3.3.5: M(3, 3, 2)

x1 x3 x2 x1

x4 x6 x5 x4

x7 x9 x8 x7

x2 x1 x3 x2

Figure 3.3.6: M(3, 3, 2)

Table 3.3: DSEMs of type [33.42 : 44]1 on the torus for |V (M)| ≤ 18

|V (M)| Isomorphic classes Length of cycles No of maps

9 M(3, 3, 0), M(3, 3, 2) (3, {3, 9}, 3) 2
M(3, 3, 1) (3, {9, 9}, 4)

12 M(4, 3, 0), M(4, 3, 3) (4, {3, 12}, 3) 2
M(4, 3, 1), M(4, 3, 2) (4, {6, 12}, 4)

15 M(5, 3, 0), M(5, 3, 4) (5, {3, 15}, 3) 3
M(5, 3, 1), M(5, 3, 3) (5, {15, 15}, 4)
M(5, 3, 2) (5, {15, 15}, 5)

18 M(6, 3, 0), M(6, 3, 5) (6, {3, 18}, 3) 5
M(6, 3, 1), M(6, 3, 4) (6, {9, 18}, 4)
M(6, 3, 2), M(6, 3, 3) (6, {6, 9}, 5)
M(3, 6, 0), M(3, 6, 1) (3, {6, 18}, 6)
M(3, 6, 2) (3, {18, 18}, 8)

3.4 DSEMs of type [33.42 : 44]2

Consider a DSEM M of type [33.42 : 44]2 with vertex set V (M). By [11], we have |V(44)| =
|V(33,42)| = 2k for some k ∈ N, where |V(44)| and |V(33,42)| are same as in Section 3.3. Now define
following three types of paths in M .

Definition 3.4.1 A path P1 = P (. . . , yi−1, yi, yi+1, . . .) in M is of type Y1 if all the triangles
incident with an inner vertex yi lie on one side and all the quadrangles incident with yi lie on the
other side of the subpath P ′(yi−1, yi, yi+1) or every vertex of the path have face-sequence (44), see
in Figure 3.4.1. If a boundary vertex of P1 is yj then there is an extended path say P1e of P1 such
that yj is an inner vertex of P1e .

Definition 3.4.2 Consider a path P2 = P (. . . , zi−1, zi, zi+1, . . .) in M such that zi, zi+1 are inner
vertices of P2 or an extended path of P2. We say that P2 is of type Y2, see in Figure 3.4.1, if either
of the two conditions occur for each vertex of the path.
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1. if lk(zi) = C7(m, zi−1,n, o, zi+1, p, q) then lk(zi+1) = C7(r, zi+2, s, p, zi, o, t), lk(zi+2) = C8(u,
zi+3,v, s,p, zi+1, t, r), lk(zi+3) = C8(w, zi+4,x, v, s, zi+2, r, u), and if lk(zi) = C7(m, zi+1,n,
o, zi−1, p, q) then lk(zi+1) = C8(o, zi, q,m, r, zi+2, s, n), lk(zi+2) = C8(n, zi+1,m, r, t, zi+3,u,
s), lk(zi+3) = C7(s, zi+2, r, t, zi+4, v, u).

2. if lk(zi) = C8(m, ui−1,n, o,p, zi+1, q, r) then lk(zi+1) = C7(r, zi,o, p, zi+2, s, q), lk(zi+2) =
C7(t, zi+3,u, s, zi+1, p, v), lk(zi+3) = C8(s, zi+2,v, t,w, zi+4,x, u), and if lk(zi) = C7(m, zi+1,
n, o,p, ui−1, q, r) then lk(zi+1) = C8(o, zi, r,m, s, zi+2, t, n), lk(zi+2) = C8(n, zi+1,m, s, zi+3,
u, t), lk(zi+3) = C7(w, zi+4,x, u, zi+2, s, v).

Definition 3.4.3 Consider a path P3 = P (. . . , wi−1, wi, wi+1, . . .) in M such that wi, wi+1 are inner
vertices of P3 or an extended path of P3. We say that P3 is of type Y3, see in Figure 3.4.1, if either
of the two conditions occur for each vertex of the path.

1. if lk(wi) = C7(m, ui−1,n, o, p, wi+1, q) then lk(wi+1) = C7(r, wi+2, s, t, q, wi, p), lk(wi+2) =
C8(t, wi+1,p, r,u, wi+3,v, s), lk(wi+3) = C8(w, wi+4,x, v, s, wi+2, r, u), and if lk(wi) = C7(m,
wi+1,n, o, p, ui−1, q) then lk(wi+1) = C8(o, wi, q, a, r, wi+2, s, n), lk(wi+2) = C8(n, wi+1,m, r,
t, wi+3,u, s), lk(wi+3) = C7(s, wi+2, r, t, v, wi+4, u).

2. if lk(wi) = C8(m, ui−1,n, o,p, wi+1, q, r) then lk(wi+1) = C7(r, wi,o, p, s, wi+2, q), lk(wi+2) =
C7(t, wi+3,u, v, q, wi+1, s), lk(wi+3) = C8(w, wi+4,x, u,v, wi+2, s, t), and if lk(wi) = C8(m,
wi+1,n, o,p, ui−1, q, r) then lk(wi+1) = C8(o, wi, r,m, s, wi+2, t, n), lk(wi+2) = C7(n, wi+1,
m, s, u, wi+3, t), lk(wi+3) = C7(v, wi+4,w, x, t, wi+2, u).

Y3 Y2

Y1

Y1

Figure 3.4.1: Paths of type Y1, Y2, Y3

u1 u2 u3 u4 uk uk+1 uk+2 uk+3 ui−1 ui u1

v1 v2 v3 v4 vk vk+1 vk+2 vk+3 vi−2 vi v1

w1 w2 w3 w4 wk wk+1 wk+2 wk+3 wi−2 wi w1

x1 x2 x3 x4 xk xk+1 xk+2 xk+3
xi−1 xi x1

uk+1 uk+2 uk+3 uk+4 ui u1 u2 u3 uk−1 uk uk+1

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

Figure 3.4.2: M(i, 4, k) representation

Consider a maximal path P (v1, v2, . . . , vi) of the type Yα, α ∈ {1, 2, 3}. Following Lemmas 3.1.1,
3.1.3, there is an edge vi-v1 in M such that P (v1, v2, . . . , vi) ∪ {vi-v1} is a non-contractible cycle
Q = Ci(v1, v2, . . . , vi). The cycles of type Y2 and Y3 define same type cycles as they are mirror image
of each other. By equation (1) of Section 3.1, define a cycle of type Y4 in M . Let u ∈ V (M) and Qα

be cycles of type Yα through u. As in Section 3.1, we define an M(i, j, k) representation of M for
some i, j, k. For this, we first cut M along the cycle Q1 and then cut it along the cycle Q3. Without
loss of generality, assume that the faces incident on the base horizontal cycle are quadrangular, for
examples see M(i, 4, k) in Figure 3.4.2. Then we prove the following lemma.

Lemma 3.4.1 The DSEM M of type [33.42 : 44]2 admits an M(i, j, k) representation iff the fol-
lowing holds: (i) i ≥ 3 and j = 4m, where m ∈ N, (ii) ij ≥ 12, (iii) 0 ≤ k ≤ i− 1.

Proof. Let M be a DSEM of type [33.42 : 44]2 with n vertices. Then for the existence of M we
have |V (33, 42)| = |V (44)|. Now proceeding as in Lemma 3.2.1, we get the result. ✷

For t = 1, 2, let Mt be DSEMs of type [33.42 : 44]2 on nt number of vertices with representation
Mt(it, jt, kt). Suppose n1 = n2. Let Qt,α be the cycles of type Yα and lt,α = length of the cycle of
type Yα, for α = 1, 2, 3, 4, in Mt(it, jt, kt). We say that Mt(it, jt, kt) has cycle-type (lt,1, lt,2, lt,3, lt,4)
if lt,2 ≤ lt,3 or (lt,1, lt,3, lt,2, lt,4) if lt,3 < lt,2. Now, we show the following lemma.
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Lemma 3.4.2 The DSEMs M1
∼= M2 if and only if they have same cycle-type.

Proof. Suppose M1 and M2 be two DSEMs of the type [33.42 : 44]2 with same number of vertices
such that they have same cycle-type. Then l1,1 = l2,1, {l1,2, l1,3} = {l2,2, l2,3} and l1,4 = l2,4. Claim
that M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Note that Mt(it, jt, kt) has jt number of Y1 types disjoint horizontal cycles of length it, say Q0 =
Ci1(y0,0, y0,1, . . . , y0,i1−1), Q1 = Ci1(y1,0, y1,1, . . . , y1,i1−1), . . . , Qj1−1 = Ci1(yj1−1,0, yj1−1,1, . . . ,
yj1−1,i1−1) in M1(i1, j1, k1) and Q′

0 = Ci2(z0,0, z0,1, . . . , z0,i2−1), Q
′
1 = Ci2(z1,0, z1,1, . . . , z1,i2−1), . . . ,

Q′
j2−1 = Ci2(zj2−1,0, zj2−1,1, . . . , zj2−1,i2−1) in M2(i2, j2, k2). Then we have the following cases.

Case 1: If (i1, j1, k1) = (i2, j2, k2) then i1 = i2, j1 = j2 and k1 = k2. Define an isomorphism f :
V (M1(i1, j1, k1)) → V (M2(i2, j2, k2)) such that f(yu,v) = zu,v for 0 ≤ u ≤ j1−1 and 0 ≤ v ≤ i1−1.
So, M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Case 2: If i1 6= i2 then it contradicting the fact l1,1 = l2,1. So i1 = i2.

Case 3: If j1 6= j2 then it contradicting the fact that n1 6= n2. So j1 = j2.

Case 4: If k1 6= k2 then by, l1,4 = l2,4, we see length(Q1,4) = length (Q2,4). This implies min{k1 +
j1, j1 + (i1 − k1 − j1/4)} = min{k2 + j2, j2 + (i2 − k2 − j2/4)}. Since i1 = i2, j1 = j2 and k1 6= k2,
it follows that k1 + j1 6= k2 + j2 and j1 + (i1 − k1 − j1/4) 6= j2 + (i2 − k2 − j2/4). This gives
k1 + j1 = i2 − k2 − j2/4 + j2 = i1 − k2 + 3j1/4 as i1 = i2 and j1 = j2. That is, k2 = i1 − k1 −
j1/4. Now identify M2(i2, j2, k2) along the path P (z0,0, z1,0, . . . , zj2−1,0, z0,k2) and then cut along
the path P (z0,0, z1,0, z2,0, z3,0, z4,1, . . . , zj2−1,j2/4−1, z0,k2+j2/4) of type Y2 through vertex z0,0. This
gives another representation of M2, say R, with a map f ′ : V (T2) → V (R) such that f ′(zu,v) =
zu,(i2−v+⌊u/4⌋)(mod i2) for 0 ≤ u ≤ j2−1 and 0 ≤ v ≤ i2−1. In R the lower and upper horizontal cycles
are Q′ = Ci2(z0,0, z0,i2−1, z0,i2−2, . . . , z0,1) and Q′′ = Ci2(z0,k2+j2/4, z0,k2+j2/4−1, . . . , z0,k2+j2/4+1)
respectively. The path P (z0,0, z0,i2−1, z0,i2−2, . . . , z0,k2+j2/4) in Q′ has length i2 − k2 − j2/4. Note
that R has j2 number of horizontal cycle of length i2. So, R = M2(i2, j2, i2 − k2 − j2/4). Also
i2−k2− j2/4 = i2− (i1−k1− j1/4)− j2/4 = k1 since i2 = i1, j2 = j1. Thus, (i2, j2, i2−k2− j2/4) =
(i1, j1, k1). Therefore by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2) and hence, M1

∼= M2.

In the same way as in the converse part of the Lemma 3.1.7, we get the converse part of the
above lemma. This completes the proof. ✷

Now computing the DSEMs for the first four admissible values of |V (M)|, we get Table 3.4. We
illustrate this computation for |V (M)| = 12 as follows.

Example 3.4.1 Let M be a DSEM of type [33.42 : 44]2 with 12 vertices on the torus. By Lemma
3.4.1, M has three M(i, j, k) representation, namely, M(3, 4, 0),M(3, 4, 1) and M(3, 4, 2), see Fig-
ures 3.4.3, 3.4.4, 3.4.5 respectively. In M(3, 4, 0), Q1,1 = C3(x1, x2, x3) is a Y1 type cycle, Q1,2 =
C12(x1, x4, x7, x10, x2, x5, x8, x11, x3, x6, x9, x12) and Q1,3 = C4(x1, x4, x7, x10) are Y2 type cycles and
Q1,4 = C4(x1, x4, x7, x10) is a Y4 type cycle. In M(3, 4, 1), Q2,1 = C3(y1, y2, y3) is a Y1 type cycle,
Q2,2 = C12(y1, y4, y7, y10, y3, y6, y9, y12, y2, y5, y8, y11) and Q2,3 = C12(y1, y4, y7, y10, y2, y5, y8, y11, y3,
y6, y9, y12) are Y2 type cycles and Q2,4 = C5(y2, y5, y8, y11, y1) is a Y4 type cycle. In M(3, 4, 2), Q3,1 =
C3(z1, z2, z3) is a Y1 type cycle, Q3,2 = C4(z1, z4, z7, z10) and Q3,3 = C12(z1, z4, z7, z10, z3, z6, z9, z12,
z2, z5, z8, z11) are Y2 type cycles and Q3,4 = C4(z3, z6, z9, z12) is a Y4 type cycle.

In M(i, j, k), observe that type Y1 cycles have the same length and type Y2 cycles have at
most two different lengths. Since length(Q2,4) 6= length(Qr,4) for r = 1, 3, M(3, 4, 1) ≇ M(3, 4, 0),
M(3, 4, 2). Observe that, length (Q1,1) = length(Q3,1), { length(Q1,2), length(Q1,3)} = { length
(Q3,2), length (Q3,3)} and length(Q1,4) =length(Q3,4). Now identifying M(3, 4, 0) along the vertical
boundray and cutting along the path P (x1, x4, x17, x10, x2) leads to Figure 3.4.6, i.e., M(3, 4, 2).
By the isomorphism map define in Lemma 3.4.2, M(3, 4, 0) ∼= M(3, 4, 2). Therefore, there are two
DSEMs, up to isomorphism, of type [33.42 : 44]2 with 12 vertices on the torus.
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x1 x2 x3 x1

x4 x5 x6 x4

x7 x8 x9 x7

x10 x11 x12 x10

x1 x2 x3 x1

Figure 3.4.3: M(3, 4, 0)

y1 y2 y3 y1

y4 y5 y6 y4

y7 y8 y9 y7

y10 y11 y12 y10

y2 y3 y1 y2

Figure 3.4.4: M(3, 4, 1)

z1 z2 z3 z1

z4 z5 z6 z4

z7 z8 z9 z7

z10 z11 z12 z10

z3 z1 z2 z3

Figure 3.4.5: M(3, 4, 2)

x1 x3 x2 x1

x4 x6 x5 x4

x7 x9 x8 x7

x10 x12 x11 x10

x2 x1 x3 x2

Figure 3.4.6: M(3, 4, 2)

Table 3.4 : DSEMs of type [33.42 : 44]2 on the torus for |V (M)| ≤ 24
|V (M)| Isomorphic classes Length of cycles No of maps

12 M(3, 4, 0), M(3, 4, 2) (3, {4, 12}, 4) 2
M(3, 4, 1) (3, {12, 12}, 5)

16 M(4, 4, 0), M(4, 3, 3) (4, {4, 16}, 4) 2
M(4, 4, 1), M(4, 4, 2) (4, {8, 16}, 5)

20 M(5, 4, 0), M(5, 4, 4) (5, {4, 20}, 4) 3
M(5, 4, 1), M(5, 4, 3) (5, {20, 20}, 5)
M(5, 4, 2) (5, {20, 20}, 6)

24 M(6, 4, 0), M(6, 4, 5) (6, {4, 24}, 4) 5
M(6, 4, 1), M(6, 4, 4) (6, {12, 24}, 5)
M(6, 4, 2), M(6, 4, 3) (6, {8, 12}, 6)
M(3, 8, 0), M(3, 8, 1) (3, {8, 24}, 8)
M(3, 8, 2) (3, {24, 24}, 10)

3.5 DSEMs of type [33.42 : 32.4.3.4]1

Let M be a DSEM of type [33.42 : 32.4.3.4]1 with the vertex set V (M). For the existence of M we
have 2|V(33,42)| = |V(32,4,3,4)| and |V(32,4,3,4)| = 4k, for some k ∈ N, see [11]. In this type DSEM, we
consider a path of type, say W1, as P1 = P (. . . , wi, zj , zj+1, zj+2, zj+3, wi+1, . . .) through a vertex,
see in Figure 3.5.2, where the vertices denoted by w′

is and z′js have face-sequences (33, 42) and

(32, 4, 3, 4) respectively. Observe that through a vertex v with face-sequence (32, 4, 3, 4), we have
two paths of type W1, as shown in Figure 3.5.1.

W1

W1

Figure 3.5.1: Paths of type W1

zj−1 wi zj

zj+1 zj+2

zj+3 wi+1 zj+1

Figure 3.5.2: Path of type W1 (indicated by bold line)

u1 u2 u3 u4 u5 u5k u5k+1u5k+2 u5k+3 u5k+4 ui−1 ui u1

v1 v2 v3 v4 v5k−1
v5k+3 vi−2

vi
v1

w1 w2 w3 w4 w5k−1 w5k+3 wi−1wi−2
wi

w1

x1 x2 x3
x4 x5 x5k x5k+4

xi−1 xi x1

u5k+1 u5k+2 u5k+3 u5k+4 u5k+5 ui u1 u2 u3 u4 u5k−1 u5k u5k+1

y1 y2
y 2i

5

z1 z2
z 2i

5
z1

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

Figure 3.5.3: M(i, 4, 5k)

Consider a maximal path P (v1, v2, . . . , vi) of the type W1. By Lemmas 3.1.1, 3.1.3, there is an
edge vi-v1 in M such that P (v1, v2, . . . , vi)∪{vi-v1} is a non-contractible cycle Q = Ci(v1, v2, . . . , vi)
of type W1. Then as in Section 3.1, every DSEM of type [33.42 : 32.4.3.4]1 has an M(i, j, k)
representation for some i, j, k. Figure 3.5.3 is an example of M(i, 4, 5k) representation.
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Lemma 3.5.1 The DSEM M of type [33.42 : 32.4.3.4]1 admits an M(i, j, k) representation iff the
following holds: (i) i = 5m, m ∈ N and j is even, (ii) number of vertices of M(i, j, k) = 6ij/5 ≥ 12,
(iii) if j = 4m + 2, m ∈ N ∪ {0} then k ∈ {5r + 3 : 0 ≤ r < i/5}, and if j = 4m, m ∈ N then
k ∈ {5r : 0 ≤ r < i/5} .

Proof. Let M be a DSEM of type [33.42 : 32.4.3.4]1. An M(i, j, k) of M has j number of
W1 type disjoint horizontal cycles of length i. Let Q(1, 0) = Ci(y0,0, y0,1, . . . , y0,i−1), Q(1, 1) =
Ci(y1,0, y1,1, . . . , y1,i−1), . . . , Q(1, j − 1) = Ci(yj−1,0, yj−1,1, . . . , yj−1,i−1) denote horizontal cycles of
type W1. Note that, the number of vertices with face-sequence (33, 42) lying between horizontal
cycles Q(1, (2s+1)(mod j)) and Q(1, (2s+2)(mod j)), for 0 ≤ s ≤ j − 1, is 2i/5 · j/2. So, the total
number of vertices in M is n = ij + ij/5 = 6ij/5. If j = 1, then M(i, 1, k) has no vertex with
face-sequence (33, 42) or (32, 4, 3, 4). This is not possible. So j ≥ 2. If j ≥ 2 and j is not an even
integer then some vertices in the base horizontal cycle do not follow the face-sequences (33, 42) and
(32, 4, 3, 4). So, j is even.

If j is even and i < 5 then the M(4, j, k) representation has some vertices which do not follow
the face-sequences (33, 42) and (32, 4, 3, 4). So, i 6= 4. Similarly i = 1, 2, 3 is not possible. Thus
i ≥ 5. If i ≥ 5 and not a multiple of 5, then 2|V (33, 42)| 6= |V (32, 4, 3, 4)|. This is not possible. So
i = 5m, where m ∈ N and n = 6ij/5 ≥ 12.

If j = 4m + 2, m ∈ N ∪ {0} and k ∈ {r : 0 ≤ r ≤ i − 1} \ {5r + 3 : 0 ≤ r < i/5} then we get
some vertices which do not follow the face-sequences (33, 42) and (32, 4, 3, 4). So, k ∈ {5r + 3 : 0 ≤
r < i/5} for j = 4m + 2, m ∈ N ∪ {0}. Proceeding similarly we see that if j = 4m, m ∈ N then
k ∈ {5r : 0 ≤ r < i/5}. This completes the proof. ✷

Let M(i, j, k) be a representation of a DSEM M of type [33.42 : 32.4.3.4]1. Let Qlh = Ci(y1, y2,
. . . , yi) and Quh = Ci(yk+1, yk+2, . . . , yk) be the lower and upper horizontal cycles in the represen-
tation respectively. Let P1 = P (yk+1, . . . , yk1) be a path through yk+1 of type W1 that is not a part
of horizontal cycles. Consider the paths P ′

1 = P (yk+1, . . . , yk1) and P ′′
1 = P (yk1 , . . . , yk+1) in Quh

such that Quh = P ′
1 ∪P ′′

1 . Let Q3,1 = P1 ∪P ′
1 and Q3,2 = P1 ∪P ′′

1 . Define a cycle Q3 of new type as

Q3 =

{

Q3,1, if length(Q3,1) ≤ length(Q3,2)

Q3,2, if length(Q3,1) > length(Q3,2).
(2)

We say that Q3 is of type W2. So we have cycles of types W1,W2 in M(i, j, k).

For t ∈ {1, 2}, let Mt be DSEMs of type [33.42 : 32.4.3.4]1 on nt number of vertices with n1 = n2.
Let Mt(it, jt, kt) be a representation of Mt. Following equation (2), define cycles of type W2 in R
which is obtained by identifying M2(i2, j2, k2) along the vertical boundary P (y0,0, y1,0, . . . , yj2−1,0,
y0,k2) and then cutting along the path P (y0,r, y1,r−1, y2,r−1, y3,r, . . . , y0,r+k2) or P (y0,r, y1,r−1, y2,r−1,
y3,r, . . . , y0,r+k2−1) for some r = 5m + 4, where m ∈ N ∪ {0} and 0 ≤ r ≤ i2 − 1. In Mt(it, jt, kt),
let Qt,α, α = 1, 2, denote non-homologous cycles of type W1 and Qt,3 denote cycles of type W2. Let
lt,α = length(Qt,α) for α = 1, 2, 3. Then we show the following lemma.

Lemma 3.5.2 The DSEMs M1
∼= M2 iff (l1,1, l1,2, l1,3) = (l2,r1 , l2,r2 , l2,3) for r1 6= r2 ∈ {1, 2},

where l1,3 and l2,3 are lengths of cycles of type W2 in M1(i1, j1, k1) and R respectively.

Proof. Suppose that (l1,1, l1,2, l1,3) = (l2,r1 , l2,r2 , l2,3) for r1 6= r2 ∈ {1, 2}. This implies that
{l11, l12} = {l21, l22} and l13 = l23. Then we make the following claim.

Claim. M1(i1, j1, k1) ∼= M2(i2, j2, k2).

By the definition, Mt(it, jt, kt) has jt number of W1 type disjoint horizontal cycles of length
it. Let Q(1, 0) = Ci1(y0,0, y0,1, . . . , y0,i1−1), Q(1, 1) = Ci1(y1,0, y1,1, . . . , y1,i1−1), . . . , Q(1, j1 − 1) =
Ci1(yj1−1,0, yj1−1,1, . . . , yj1−1,i1−1) denote W1 type horizontal cycles in M1(i1, j1, k1). Let G1(1, (2s+
1)(mod j1)) = {x(2s+1)(mod j1),0, x(2s+1)(mod j1),1, . . . , x(2s+1)(mod j1),(2i1−5)/5} be the set of vertices
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which lie between horizontal cycles Q(1, (2s + 1)(mod j1)) and Q(1, (2s + 2)(mod j1)) for 0 ≤ s ≤
j1 − 1. Similarly, let Q(2, 0) = Ci2(z0,0, z0,1, . . . , z0,i2−1), Q(2, 1) = Ci2(z1,0, z1,1, . . . , z1,i2−1), . . . ,
Q(2, j2 − 1) = Ci2(zj2−1,0, zj2−1,1, . . . , zj2−1,i2−1) denote W1 type horizontal cycles in M2(i2, j2, k2)
and G2(2, (2s + 1)(mod j2)) = {w(2s+1)(mod j2),0, w(2s+1)(mod j2),1, . . . , w(2s+1)(mod j2),(2i2−5)/5} be the
set of vertices which lie between horizontal cycles Q(1, (2s+1)(mod j2)) and Q(1, (2s+2)(mod j2))
for 0 ≤ s ≤ j2 − 1. Now, we have the following cases.

Case 1: If (i1, j1, k1) = (i2, j2, k2) then i1 = i2, j1 = j2, k1 = k2. Define an isomorphism
f : V (M1(i1, j1, k1)) → V (M2(i2, j2, k2)) such that f(yg,h) = zg,h for 0 ≤ g ≤ j1 − 1, 0 ≤ h ≤ i1 − 1
and f(x(2s+1)(mod j1),h) = w(2s+1)(mod j1),h for the vertices of G1(1, (2s+1)(mod j1)) and G2(2, (2s+
1)(mod j1)) for all 0 ≤ s ≤ j1 − 1, 0 ≤ h ≤ (2i1 − 5)/5. By f , M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Case 2(a): If i1 = i2, j1 = j2 = 4m and k1 6= k2, where m ∈ N, then identify M2(i2, j2, k2) along the
vertical boundary P (z0,0, z1,0, . . . , zj2−1,0, z0,k2) and then cut along the path P (z0,r, z1,r−1, z2,r−1, z3,r,
x3,⌊2r/5⌋, z4,r, . . . , z0,r+k2) for some r = 5m + 4, where m ∈ N ∪ {0} and 0 ≤ r ≤ i2 − 1. This gives
representation R of M2(i2, j2, k2) with a map f ′ : V (M2(i2, j2, k2)) → V (R) such that

f ′(zg,h) =























zg,(i2+r−h)(mod i2), if 0 ≤ h ≤ i2 − 1 and 0 ≤ g ≤ j2 − 1, g = 4m− 1, 4m; where

m ∈ N ∪ {0}

zg,(i2+r−h−1)(mod i2), if 0 ≤ h ≤ i2 − 1 and 0 ≤ g ≤ j2 − 1, g 6= 4m− 1, 4m; where

m ∈ N ∪ {0}

f ′(w(2s+1)(mod j2),h) = w(2s+1)(mod j2),(2i2/5+⌊2r/5⌋−h)(mod 2i2/5) for 0 ≤ s ≤ j2 − 1 and 0 ≤ h ≤
(2i2 − 5)/5.

In R, the lower and upper horizontal cycles are Q′ = Ci2(z0,r, z0,r−1, . . . , z0,i2−1, z0,0, z0,1, . . . ,
z0,r+1) and Q′′ = Ci2(z0,r+k2 , z0,r+k2−1, . . . , z0,r+k2+1) respectively. The path P (z0,r, z0,r−1, . . . ,
z0,r+k2) in Q′ has length r+ i2− (r+ k2) = i2− k2. Note that, R has j2 number of horizontal cycles
of length i2. So R = M2(i2, j2, i2 − k2). Since l1,3 = l2,3, length(Q1,3) = length(Q2,3). This implies
min{j1 + j1/4+ k1, j1 + j1/4+ (i1 − k1)} = min{j2 + j2/4+ i2 − k2, j2 + j2/4+ i2 − (i2− k2)}. Since
i1 = i2, j1 = j2 and k1 6= k2, it follows that k1 + 5j1/4 6= k2 + 5j2/4 and j1 + j1/4 + (i1 − k1) 6=
j2 + j2/4+ i2 − (i2 − k2). This gives k1 +5j1/4 = i2 +5j2/4− k2 = i2 +5j1/4− k2 as j1 = j2. That
is, k1 = i2 − k2. Thus, M2(i2, j2, i2 − k2) = M1(i1, j1, k1). So by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2).

(b): If i1 = i2, j1 = j2 = 4m+2 and k1 6= k2, where m ∈ N, identify M2(i2, j2, k2) along the ver-
tical boundary P (z0,0, z1,0, . . . , zj2−1,0, z0,k2) and then cut along the path P (z0,r, z1,r−1, z2,r−1, z3,r,
x3,⌊2r/5⌋, z4,r, . . . , z0,r+k2−1) for some r = 5m+4, where m ∈ N∪{0} and 0 ≤ r ≤ i2− 1. This gives
representation R of M2 with a map f ′′ : V (M2(i2, j2, k2)) → V (R) such that

f ′′(zg,h) =























zg,(i2+r−h)(mod i2), if 0 ≤ h ≤ i2 − 1 and 0 ≤ g ≤ s2 − 1, g = 4m− 1, 4m; where

m ∈ N ∪ {0}

zg,(i2+r−h−1)(mod i2), if 0 ≤ h ≤ i2 − 1 and 0 ≤ g ≤ s2 − 1, g 6= 4m− 1, 4m; where

m ∈ N ∪ {0}

f ′′(w(2s+1)(mod j2),h) = w(2s+1)(mod j2),(2i2/5+⌊2r/5⌋−h)(mod 2i2/5)) for 0 ≤ s ≤ j2 − 1 and 0 ≤ h ≤
(2i2 − 5)/5.

In R, the lower and upper horizontal cycles are Q′ = Ci2(z0,r, z0,r−1, . . . , z0,i2−1, z0,0, z0,1, . . . ,
z0,r+1) and Q′′ = Ci2(z0,r+k2−1, z0,r+k2−2, . . . , z0,r+k2) respectively. The path P (z0,r, z0,r−1, . . . ,
z0,r+k2−1) in Q′ has length r + i2 − (r + k2 − 1) = i2 − k2 + 1. Note that, R has j2 number
of horizontal cycles of length i2. So R = M2(i2, j2, i2 − k2 + 1). By assumption, l1,3 = l2,3,
length(Q1,3) = length(Q2,3). This implies that min{j1+⌊j1/3⌋+(k1−1), j1+⌊j1/3⌋+(i1−k1+1)}
= min{j2+⌊j2/3⌋+(i2−k2+1)−1, j2+⌊j2/3⌋+i2−(i2−k2)}. If k1+j1+⌊j1/3⌋−1 = k2+j2+⌊j2/3⌋,
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it implies k1 − k2 = 1 since j1 = j2. This is not possible since k1 − k2 = 5m, where m ∈ N. This
gives that k1 + j1 + ⌊j1/3⌋ − 1 = i2 + j2 + ⌊j2/3⌋ − k2 = i2 + j1 + ⌊j1/3⌋ − k2 as j1 = j2. That is,
k1 = i2−k2+1. Thus M2(i2, j2, i2−k2+1) = M1(i1, j1, k1). So by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2).

(c): If i1 = i2, j1 = j2 = 2 and k1 6= k2, identify M2(i2, j2, k2) along the vertical boundary
P (z0,0, z1,0, z0,k2) of M2(i2, j2, k2) and then cut along the path P (z0,r, z1,r−1, z0,r+k2−1) for some
r = 5m + 4, where m ∈ N ∪ {0} and 0 ≤ r ≤ i2 − 1. This leads to representation R of M2 with a
map f ′′′ : V (M2(i2, j2, k2)) → V (R) such that

f ′′′(zg,h) =

{

zg,(i2+r−h)(mod i2), if g = 0 and 0 ≤ h ≤ i2 − 1

zg,(i2+r−h−1)(mod i2), if g = 1 and 0 ≤ h ≤ i2 − 1

f ′′′(w1,h) = w1,(2i2/5+⌊2r/5⌋−h)(mod 2i2/5)) for 0 ≤ h ≤ (2i2 − 5)/5.

In R, the lower and upper horizontal cycles are Q′ = Ci2(z0,r, z0,r−1, . . . , z0,i2−1, z0,0, z0,1, . . . ,
z0,r+1) and Q′′ = Ci2(z0,r+k2−1, z0,r+k2−2, . . . , z0,r+k2) respectively. The path P (z0,r, z0,r−1, . . . ,
z0,r+k2−1) in Q′ has length r + i2 − (r + k2 − 1) = i2 − k2 + 1. In this process, R has j2 number of
horizontal cycles of length i2. Thus, we have R = M2(i2, j2, i2 − k2 +1). By assumption, l1,3 = l2,3,
length(Q1,3) = length(Q2,3). This implies min{j1 + j1/2 + (k1 − 1), j1 + j1/2 + (i1 − k1 + 1)} =
min{j2 + j2/2 + (i2 − k2 + 1) − 1, j2 + j2/2 + i2 − (i2 − k2)}. If k1 + 3j1/2 − 1 = k2 + 3j2/2
then k1 − k2 = 1, as j1 = j2. This is not possible since k1 − k2 = 5m, for m ∈ N. Therefore
k1 + 3j1/2 − 1 = i2 + 3j2/2 − k2 = i2 + 3j1/2 − k2, as j1 = j2. That is, k1 = i2 − k2 + 1. Thus,
(i2, j2, i2 − k2 + 1) = (i1, j1, k1). Hence by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Case 3: If i1 6= i2, identify boundaries of M2(i2, j2, k2) and cut M2 along a cycle of type W1 of
length i1 to get another representation say R′ = M2(i3, j3, k3) of M2. This implies that i1 = i3 and
j1 = j3 as n1 = 6i1j1/5 = 6i3j3/5 = n2. Thus R′ = M2(i1, j1, k3). If k1 6= k3 then we are in Case
2. If k1 = k3 then M1

∼= M2 by f in Case 1. This completes the claim. Therefore, M1
∼= M2.

Conversely, let M1
∼= M2 by an isomorphism f . Let Q1,α and Q2,α, α = 1, 2, denote non-

homologous cycles of type W1 in M1 and M2 respectively. Also, let Q1,3 and Q2,3 denote cycles
of type W2 in M1 and R respectively. Let f : V (M1) → V (M2) be such that f(Q1,α) = Q2,α

for α = 1, 2, 3. Since f is an isomorphism, length(Q1,α) = length(f(Q1,α)) = length(Q2,α). So,
{l11, l12} = {l21, l22} and l13 = l23. Hence, M1 and M2 have the same cycle-type. ✷

Now computing DSEMs for the first four admissible values of |V (M)|, we get Table 3.5. We
illustrate this computation for |V (M)| = 24 as follows.

Example 3.5.1 Let M be a DSEM of type [33.42 : 32.4.3.4]1 with 24 vertices on the torus. By
Lemma 3.5.1, M has three M(i, j, k) representation, namely, M(5, 4, 0),M(10, 2, 3) and M(10, 2, 8),
see Figures 3.5.4, 3.5.5, 3.5.6 respectively. In M(5, 4, 0), Q1,1 = C5(u1, u2, u3, u4, u5) and Q1,2 =
C5(u1, v1, w1, x1, z1) are W1 type cycles and Q1,3 = C5(u1, v1, w1, x1, z1) is a W2 type cycle. In
M(10, 2, 3), Q2,1 = C10(u1, u2, u3, u4, u5, u6, u7, u8, u9, u10) and Q2,2 = C10(u1, v1, u4, v3, y2, u6, v6,
u9, v8, y4) are W1 type cycles, and Q2,3 = C5(u4, v3, y2, u6, u5) is a W2 type cycle. In M(10, 2, 8),
Q3,1 = C10(u1, u2, u3, u4, u5, u6, u7, u8, u9, u10) and Q3,2 = C10(u1, v1, u9, v8, y4, u6, v6, u4, v3, y2) are
W1 type cycles, and Q3,3 = C6(u9, v8, y4, u6, u7, u8) is a W2 type cycle.

Since {length(Q1,1), length(Q1,2)} 6= {length(Qr,1), length(Qr,2)} for r = 2, 3, M(5, 4, 0) ≇

M(10, 2, 3),M(10, 2, 8). Now identifying M(10, 2, 3) along the path P (u1, v1, u4) and cutting along
the path P (u5, v4, u7) leads to Figure 3.5.6, i.e., M(10, 2, 8). By Lemma 3.5.2, M(10, 2, 3) ∼=
M(10, 2, 8). Therefore, there are two DSEMs of type [33.42 : 32.4.3.4]1 with 24 vertices.

u1 u2u3 u4 u5 u1

v1 v2 v3 v4
v5

v1

w1 w2 w3 w4

w5

w1

x1 x2 x3 x4 x5 x1

y1 y2

z1 z2 z1

u1 u2 u3 u4 u5 u1

Figure 3.5.4: M(5, 4, 0)

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u1

v1 v2 v3 v4
v5

v6 v7 v8 v9

v10

v1

u4 u5 u6 u7 u8 u9 u10 u1 u2 u3 u4

y1 y2 y3 y4

Figure 3.5.5: M(10, 2, 3)
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u1

v1 v2 v3 v4
v5

v6 v7 v8 v9

v10

v1

u9 u10 u1 u2 u3 u4 u5 u6 u7 u8 u9

y1 y2 y3 y4

Figure 3.5.6: M(10, 2, 8)

u5 u4 u3 u2 u1 u10 u9 u8 u7 u6 u5

v4 v3 v2 v1
v10

v9 v8 v7 v6
v5

v4

u7 u6 u5 u4 u3 u2 u1 u10 u9 u8 u7

y2 y1 y4 y3

Figure 3.5.7: M(10, 2, 8)

Table 3.5 : DSEMs of type [33.42 : 32.4.3.4]1 on the torus for |V (M)| ≤ 48

|V (M)| Isomorphic classes Length of cycles No of maps

12 M(5, 2, 3) ({5, 5}, 5) 1

24 M(5, 4, 0) ({5, 5}, 5) 2
M(10, 2, 3),M(10, 2, 8) ({10, 10}, 5)

36 M(5, 6, 3),M(15, 2, 8) ({5, 15}, 10) 2
M(15, 2, 3),M(15, 2, 13) ({15, 15}, 5)

48 M(5, 8, 0),M(10, 4, 0) ({5, 10}, 10) 4
M(10, 4, 5) ({10, 10}, 10)
M(20, 2, 3),M(20, 2, 18) ({20, 20}, 5)
M(20, 2, 8),M(20, 2, 13) ({20, 20}, 10)

3.6 DSEMs of type [33.42 : 32.4.3.4]2

Let M be a DSEM of type [33.42 : 32.4.3.4]2 with vertex set V (M). Then |V(33,42)| = |V(32,4,3,4)| = 2k,
for some k ∈ N, see [11], where |V(33,42)| and |V(32,4,3,4)| are same as in Section 3.5. We consider
following two types of paths in M as follows.

A path P1 = P (. . . , ui, vj , ui+1, vj+1, . . .) in the underlying graph of M , say of type Z1, see in
Figure 3.6.1, where the vertices u′is and v′js have face-sequences (32, 4, 3, 4) and (33, 42) respectively.

A path P2 = P (. . . , ui−1, ui, ui+1, . . .) in the underlying graph of M , say of type Z2, see in Figure
3.6.1, where every vertex of the path has face-sequence either (33, 42) or (32, 4, 3, 4).

Z2

Z1

Figure 3.6.1: Paths of types Z1 and Z2

u1 u2 u3 u4 u4k u4k+1 u4k+2 u4k+3 ui−1 ui u1

v1 v2 v3 v4 v4k v4k+1 v4k+2 v4k+3 vi−2 vi v1

w1 w2 w3 w4 w4k w4k+1 w4k+2 w4k+3

wi−2 wi w1

x1 x2 x3 x4 x4k x4k+1 x4k+2 x4k+3

xi−1 xi x1

u4k+1 u4k+2 u4k+3 u4k+4 ui u1 u2 u3 u4k−1 u4k u4k+1

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

Figure 3.6.2: M(i, 4, 4k)

ui vj

ui+1

vj+1
ui+2 vj+2 ui+3

Figure 3.6.3: Path of type Z1 (indicated by bold line)

ui

ui+1

ui+3

ui+4

ui+5

Figure 3.6.4: Paths of type Z2 (indicated by bold lines)

Consider a maximal path P (v1, v2, . . . , vi) of the type Zα, α ∈ {1, 2}. By Lemmas 3.1.1, 3.1.3,
there is an edge vi-v1 in M such that P (v1, v2, . . . , vi) ∪ {vi-v1} is a non-contractible cycle Q =
Ci(v1, v2, . . . , vi). Let u ∈ V (M) and Qα be cycles of type Zα through u. As in Section 3.1, define
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an M(i, j, k) representation of M for some i, j, k by cutting M along the cycle Q1 and then cutting
it along the cycle Q2, for example see M(i, 4, 4k) in Figure 3.6.2.

Lemma 3.6.1 A DSEM M of type [33.42 : 32.4.3.4]2 admits an M(i, j, k) representation iff the
following holds: (i) j ≥ 2 and j even, (ii) if j = 2 then i ≥ 8, and if j ≥ 4 then i ≥ 4, also
i = 4m, where m ∈ N, (iii) ij ≥ 16, (iv) if j = 2 then k ∈ {4r : 0 < r < i/4}, and if j ≥ 4 then
k ∈ {4r : 0 ≤ r < i/4}.

Proof. Let M be a DSEM of the above type with n vertices. Then M(i, j, k) has j number of
Z1 type disjoint horizontal cycles of length i. Since all the vertices of M lie in these cycles, the
number of vertices in M is n = ij. If j = 1, then M(i, 1, k) representation has no vertex having
face-sequence (33, 42) or (32, 4, 3, 4), this can not be true. So j ≥ 2. If j ≥ 2 and j is not an
even integer then after identifying the boundaries of M(i, j, k), we get some vertices in the base
horizontal cycle which do not follow the face-sequences (33, 42) and (32, 4, 3, 4). So, j is even.

If j = 2 and i < 8 then the M(7, 2, k) has some vertices which do not follow the face-sequences
V(33,42) and V(32,4,3,4). So, i 6= 7. Similarly i = 1, 2, 3, 4, 5, 6 is not possible. Thus i ≥ 8 for j = 2.

If j ≥ 4 and i < 4 then as above we get that i 6= 1, 2, 3. So i ≥ 4. If i ≥ 4 and is not a multiple
of 4, then |V (33, 42)| 6= |V (32, 4, 3, 4)|. A contradiction. So, i = 4m, where m ∈ N and n = ij ≥ 16.

If j = 2 and k ∈ {r : 0 ≤ r ≤ i− 1} \ {4r : 0 < r < i/4} then we get some vertices which do not
follow the face-sequences (33, 42) and (32, 4, 3, 4). So, k ∈ {4r : 0 < r < i/4} for j = 2. Proceeding
similarly, we see that if j ≥ 4 then k ∈ {4r : 0 ≤ r < i/4}. This completes the proof. ✷

Let M(i, j, k) be a representation of a DSEM M of the type [33.42 : 32.4.3.4]2. Let Qlh =
Ci(x1, x2, . . . , xi) and Quh = Ci(xk+1, xk+2, . . . , xk) be the lower and upper horizontal cycles in
M(i, j, k) respectively. Let P1 = P (xk+1, . . . , xk1) be a path of type Z2 through xk+1. Consider
the paths P ′

1 = P (xk+1, . . . , xk1) and P ′′
1 = P (xk1 , . . . , xk+1) in Quh such that Quh = P ′

1 ∪ P ′′
1 . Let

Q3,1 = P1 ∪ P ′
1 and Q3,2 = P1 ∪ P ′′

1 . Now define a new cycle Q3 as

Q3 =

{

Q3,1, if length(Q3,1) ≤ length(Q3,2)

Q3,2, if length(Q3,1) > length(Q3,2).
(3)

We say that Q3 is of type Z3. Thus, we have cycles of three types Z1, Z2 and Z3 in M(i, j, k).

For t ∈ {1, 2}, let Mt be two DSEMs of type [33.42 : 32.4.3.4]2 with the number of vertices nt

such that n1 = n2. Let Mt(it, jt, kt) be a representation of Mt and Qt,α be the cycle of type Zα,
α = 1, 2, 3. If lt,α = length of the cycle of type Zα in Mt(it, jt, kt) then we say that Mt(it, jt, kt) has
cycle-type (lt,1, lt,2, lt,3). Now, we show the following lemma.

Lemma 3.6.2 The DSEMs M1
∼= M2 if and only if they have same cycle-type.

Proof. Let M1 and M2 be two DSEMs of type [33.42 : 32.4.3.4]2 with the same number of vertices
such that they have same cycle-type. This implies that l1,1 = l2,1, l1,2 = l2,2 and l1,3 = l2,3

Claim. M1(i1, j1, k1) ∼= M2(i2, j2, k2).

By the definition, Mt(it, jt, kt) has jt number of Z1 type horizontal cycles, say Q0 = Ci1(x0,0, x0,1,
. . . , x0,i1−1), Q1 = Ci1(x1,0, x1,1, . . . , x1,i1−1), . . . , Qj1−1 = Ci1(xj1−1,0, xj1−1,1, . . . , xj1−1,i1−1) in
M1(i1, j1, k1) and Q′

0 = Ci2(y0,0, y0,1, . . . , y0,i2−1), Q′
1 = Ci2(y1,0, y1,1, . . . , y1,i2−1), . . . , Q

′
j2−1 =

Ci2(yj2−1,0, yj2−1,1, . . . , yj2−1,i2−1) in M2(i2, j2, k2). Now, we have the following cases.

Case 1: If (i1, j1, k1) = (i2, j2, k2) then i1 = i2 = i, j1 = j2 = j, k1 = k2 = k. Define an
f : V (M1(i1, j1, k1)) → V (M2(i2, j2, k2)) such that f(xg,h) = yg,h for 0 ≤ g ≤ j−1 and 0 ≤ h ≤ i−1.
So by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Case 2: If i1 6= i2, then it contradicting the fact l1,1 = l2,1. Thus i1 = i2.
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Case 3: If j1 6= j2, then n1 = i1j1 6= i2j2 = n2 as i1 = i2. A contradiction as n1 = n2. So, j1 = j2.

Case 4: If i1 = i2, j1 = j2 and k1 6= k2. By l1,3 = l2,3, we see length(Q1,3)=length(Q2,3). This
implies min{k1 + j1, j1 + (i1 − k1)}= min{k2 + j2, j2 + (i2 − k2)}. Also, the condition follows that
k1+j1 6= k2+j2 and j1+(i1−k1) 6= j2+(i2−k2). This gives that k1+j1 = i2+j2−k2 = i1+j1−k2
as i1 = i2 and j1 = j2. That is, k2 = i1−k1. Now identify M2(i2, j2, k2) along the vertical boundary
P (y0,0, y1,0, . . . , yj2−1,0, y0,k2) and then cut along the path P (y0,r, y1,r, . . . , y0,r+k2) for some even
0 ≤ r ≤ i2 − 1, where two triangles and one quadrangle are incident at the vertex y0,r. This
gives another representation of M2, say R, with a map f ′ : V (M2(i2, j2, k2)) → V (R) such that
f ′(yg,h) = yg,(i2+r−h)(mod i2)) for 0 ≤ g ≤ j2 − 1 and 0 ≤ h ≤ i2 − 1.

y1 y2 y3 y4 y1

z1 z2 z3 z4 z1

w1 w2

w3 w4

w1

x1 x2 x3 x4 x1

y1 y2 y3 y4 y1

Figure 3.6.5: R

z1 z2 z3 z4 z1

y1 y2 y3 y4 y1

x1 x2 x3 x4 x1

w1 w2

w3 w4

w1

z1 z2 z3 z4 z1

Figure 3.6.6: R’

Let Q′′
0, Q

′′
1 , . . . , Q

′′
j2−1 be horizontal cycles in R. In R, the lower and upper horizontal cy-

cles are Qi2(y0,r, y0,r−1, . . . , y0,0, y0,i2−1, . . . , y0,r+1) and Qi2(y0,r+k2 , y0,r+k2−1, . . . , y0,r+k2+1) respec-
tively. Observe that R does not fulfill the M(i, j, k) condition because two triangles are incident at
the beginning vertex y0,r in the base horizontal cycle Q′′

0 = Ci2(y0,r, y0,r−1, . . . , y0,i2−1, y0,0, y0,1, . . . ,
y0,r+1). (For an example, R in Figure 3.6.5 is not of type M(i, j, k) as their are two trian-
gles incident at y1). Now identify R along Q′′

0 = Ci2(y0,r, y0,r−1, . . . , y0,r+1) and then cut along
Q′′

1 = Ci2(y1,r, y1,r−1, . . . , y1,r+1). This gives another representation say R′ of M2(i2, j2, k2), where
Q′′

1 = Ci2(y1,r, y1,r−1, . . . , y1,r+1) denote the base horizontal cycle. (For an example, R′ in Figure
3.6.6 is defined from R). This process defines a map f ′′ : R → R′ such that f ′′(Q′′

s) = Q′′
(1−s)(mod j2)

for 0 ≤ s ≤ j2− 1. Thus, we redefine R to a new desired representation R′ of M2. In this processes,
R′ has j2 number of Z1 type horizontal cycles of length i2, as we are changing the order of horizontal
cycles. So, R′ has well defined M(i2, j2, i2 − k2) representation. Now i2 − k2 = i2 − (i1 − k1) = k1
since i1 = i2 and k2 = i1 − k1. Thus, M2(i2, j2, i2 − k2) = M1(i1, j1, k1). Therefore by f ,
M1(i1, j1, k1) ∼= M2(i2, j2, k2). So, the claim follows. Hence, M1

∼= M2.

The converse part follows from the converse part of the Lemma 3.1.7. Thus the proof. ✷

By Lemmas 3.6.1, 3.6.2, computing DSEMs for the first four admissible values of |V (M)|, we
get Table 3.6. For |V (M)| = 24, the computations is illustrated as follows.

Example 3.6.1 Let M be a DSEM of type [33.42 : 32.4.3.4]2 with 24 vertices on the torus. By
Lemma 3.6.1, M has three M(i, j, k) representation, namely, M(4, 6, 0),M(12, 2, 4) and M(12, 2, 8),
see Figures 3.6.7, 3.6.8, 3.6.9 respectively. In M(4, 6, 0), Q1,1 = C4(u1, u2, u3, u4), Q1,2 = C6(u1, v1,
w1, x1, y1, z1), and Q1,3 = C6(u1, v1, w1, x1, y1, z1) are cycles of type Z1, Z2, Z3 respectively. In
M(12, 2, 4), Q2,1 = C12(y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12), Q2,2 = C6(y1, z1, y5, z5, y9, z9),
and Q2,3 = C6(y5, z5, y9, y8, y7, y6) are cycles of type Z1, Z2, Z3 respectively. In M(12, 2, 8), Q3,1 =
C12(y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12), Q3,2 = C6(y1, z1, y9, z9, y5, z5), and Q3,3 = C6(y9, z9,
y5, y6, u7, u8) are cycles of type Z1, Z2, Z3 respectively.

Since length(Q1,1) 6= length(Qr,1) for r = 2, 3, M(4, 6, 0) ≇ M(12, 2, 4),M(12, 2, 8). We identify
M(12, 2, 4) along the path P (y1, z1, y5) and cut along the path P (y3, z3, y7) and next identify along
horizontal cycle and cut along the cycle C12(z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12). This gives
M(12, 2, 8) represntation, given in Figure 3.6.10. By Lemma 3.6.2, M(12, 2, 4) ∼= M(12, 2, 8). Hence,
there are two DSEMs, up to isomorphism, of type [33.42 : 32.4.3.4]2 with 24 vertices on the torus.
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Figure 3.6.7: M(4, 6, 0)
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Figure 3.6.8: M(12, 2, 4)
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Figure 3.6.9: M(12, 2, 8)
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Figure 3.6.10: M(12, 2, 8)

Table 3.6 : DSEMs of type [33.42 : 32.4.3.4]2 on the torus for |V (M)| ≤ 40

|V (M)| Isomorphic classes Length of cycles No of maps

16 M(4, 4, 0) (4, 4, 4) 2
M(8, 2, 4) (8, 4, 6)

24 M(4, 6, 0) (4, 6, 6) 2
M(12, 2, 4),M(12, 2, 8) (12, 6, 6)

32 M(4, 8, 0) (4, 8, 8) 5
M(8, 4, 0) (8, 4, 4)
M(8, 4, 4) (8, 8, 8)
M(16, 2, 4),M(16, 2, 12) (16, 8, 6)
M(16, 2, 8) (16, 4, 10)

40 M(4, 10, 0) (4, 10, 10) 3
M(20, 2, 4),M(20, 2, 16) (20, 10, 6)
M(20, 2, 8),M(20, 2, 12) (20, 10, 10)

3.7 DSEMs of type [36 : 32.4.3.4]

Let M be a DSEM of type [33.42 : 32.4.3.4]1 with vertex set V (M). Then 6|V(36)| = |V(32,4,3,4)|,
where |V(36)| and |V(32,4,3,4)| denote the cardinality of sets V(36) and V(32,4,3,4) respectively. Now
consider following two types of paths in M as follows.

A path P1 = P (. . . ui−1, ui, ui+1, . . .) in M , say of type H1, where every vertex of the path has
face-sequence (32, 4, 3, 4), see in Figure 3.7.1.

A path P2 = P (. . . , ui, vj , vj+1, vj+2, vj+3, ui+1, . . .) in M , say of type H2, where the vertices u′is
and v′js have face-sequences (36) and (32, 4, 3, 4) respectively, see in Figure 3.7.1.

H1

H2

Figure 3.7.1: Paths of types H1 and H2

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .. . .

u1 u2 u3 u4 u5 u6 u3k u3k+1u3k+2u3k+3 u3k+4 ui−2 ui−1 ui u1

v1 v2 v3 v4 v5 v3k−1 v3k+4
vi−2 vi−1 vi v1

w1 w2 w3 w4 w5 w3k−1 w3k+4 wi−2 wi−1 wi w1
y1 y2 y i

3

z1 z2
z i
3

z1

x1 x2 x3 x4 x5 x6 x3k x3k+4 xi−2 xi−1 xi x1

u3k+1u3k+2u3k+3u3k+4u3k+5u3k+6 ui u1 u2 u4 u5 u3k−2 u3k−1 u3k u3k+1

Figure 3.7.2: M(i, 4, 3k)
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Consider a maximal path P (v1, v2, . . . , vi) of the type Hα, α ∈ {1, 2}. By Lemmas 3.1.1,
3.1.3, there is an edge vi-v1 in M such that P (v1, v2, . . . , vi) ∪ {vi-v1} is a non-contractible cycle
Q = Ci(v1, v2, . . . , vi). Let u ∈ V (M) and Qα be cycles of type Hα through u. As in Section 3.1,
define an M(i, j, k) representation for a DSEM M of type [36 : 32.4.3.4] by cutting M first along
the Q1 cycle and then cutting along the Q2 cycle. Figure 3.7.2 shows M(i, 4, 3k).

Lemma 3.7.1 A DSEM M of type [36 : 32.4.3.4] admits an M(i, j, k) representation iff the follow-
ing holds: (i) j ≥ 2 even, (ii) if j = 2 then i ≥ 9 and if j ≥ 4 then i ≥ 6, also i = 3m, m ∈ N, (iii)
number of vertices of M(i, j, k) = 7ij/6 ≥ 21, (iv) if j = 2 then k ∈ {3r + 2 : 0 < r < (i − 3)/3},
if j = 4m+ 2 then k ∈ {3r + 2 : 0 ≤ r < i/3}, and if j = 4m then k ∈ {3r : 0 ≤ r < i/3}, m ∈ N.

Proof. Let M be a DSEM of above type with n vertices. Then an M(i, j, k) of M has j
number of H1 type disjoint horizontal cycles, say Q(1, 0) = Ci(z0,0, z0,1, . . . , z0,i−1), Q(1, 1) =
Ci(z1,0, z1,1, . . . , z1,i−1), . . . , Q(1, j − 1) = Ci(zj−1,0, zj−1,1, . . . , zj−1,i−1). Observe that, the num-
ber of vertices with face-sequence (36) lying between horizontal cycles Q(1, (2s + 1)(mod j)) and
Q(1, (2s + 2)(mod j)), for 0 ≤ s ≤ j − 1, is i/3 · j/2. So, the total number of vertices in M is
n = ij + ij/6 = 7ij/6. If j = 1 then M(i, 1, k) has no vertex with face-sequence (36) or (32, 4, 3, 4),
which can not be true. So j ≥ 2. If j ≥ 2 and j is not an even integer then after identifying the
boundaries, some vertices in the lower horizontal cycle does not follow the face-sequences (36) and
(32, 4, 3, 4). So j is even.

If j = 2 and i < 9 then M(i, j, k) has some vertices which do not follow the face-sequences V(36)

and V(32,4,3,4). Thus i ≥ 9 for j = 2.
If j ≥ 4 and i < 6 then as above we get that i 6= 1, 2, 3, 4, 5. Thus i ≥ 6 for j ≥ 4. If i ≥ 6 and is

not a multiple of 3, then 6|V (36)| 6= |V (32, 4, 3, 4)|. So, i = 3m, where m ∈ N and n = 7ij/6 ≥ 21.
If j = 2 and k ∈ {r : 0 ≤ r ≤ i − 1} \ {3r + 2 : 0 < r < (i − 3)/3} then we get some vertices

which do not follow the face-sequences (36) and (32, 4, 3, 4). So, k ∈ {3r+2 : 0 < r < (i− 3)/3} for
j = 2. Proceeding similarly, we see that if j = 4m then k ∈ {3r : 0 ≤ r < i/3} and if j = 4m + 2
then k ∈ {3r + 2 : 0 ≤ r < i/3}, where m ∈ N. This completes the proof. ✷

Let M(i, j, k) be a representation of a DSEM M of the type [36 : 32.4.3.4]1. Let Qlh =
Ci(y1, y2, . . . , yi) and Quh = Ci(yk+1, yk+2, . . . , yk) be the lower and upper horizontal cycles in
M(i, j, k) respectively. Let P1 = P (yk+1, . . . , yk1) be a path through yk+1 of type H2. Consider
the paths P ′

1 = P (yk+1, . . . , yk1) and P ′′
1 = P (yk1 , . . . , yk+1) in Quh such that Quh = P ′

1 ∪ P ′′
1 . Let

Q3,1 = P1 ∪ P ′
1 and Q3,2 = P1 ∪ P ′′

1 . Define a new cycle Q3 as

Q3 =

{

Q3,1, if length(Q3,1) ≤ length(Q3,2)

Q3,2, if length(Q3,1) > length(Q3,2).
(4)

We say Q3 of type H3. So, we have cycles of types Hr, r = 1, 2, 3 in M(i, j, k).

For t ∈ {1, 2}, let Mt be DSEMs of type [36 : 32.4.3.4] on nt number of vertices such that n1 = n2.
Let Mt(it, jt, kt) be representation of Mt. We define cycles of type H3 in R which is obtained by
identifying M2(i2, j2, k2) along the vertical boundary P (y0,0, y1,0, . . . , yj2−1,0, y0,k2) and then cutting
along the path P (y0,r, y1,r−1, y2,r−1, y3,r, . . . , y0,r+k2) or P (y0,r, y1,r−1, y2,r−1, y3,r, . . . , y0,r+k2−1) for
some r = 3m, where m ∈ N and 0 ≤ r ≤ i2 − 1. Let Qt,α be cycles of type Hα and lt,α = length of
cycles of type Hα for α = 1, 2, 3. Then we have following lemma.

Lemma 3.7.2 The DSEMs M1
∼= M2 iff (l1,1, l1,2, l1,3) = (l2,1, l2,2, l2,3), where l1,3 and l2,3 are

lengths of cycles of type H3 in M1(i1, j1, k1) and R respectively.

Proof. Let Mt, t = 1, 2, be two DSEMs of type [36 : 32.4.3.4] with same number of vertices and
(l1,1, l1,2, l1,3) = (l2,1, l2,2, l2,3). This implies that l1,1 = l2,1, l1,2 = l2,2 and l1,3 = l2,3.

Claim. M1(i1, j1, k1) ∼= M2(i2, j2, k2).
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By definition, Mt(it, jt, kt) has jt number of H1 type disjoint horizontal cycles of length it.
Let Q(1, 0) = Ci1(y0,0, y0,1, . . . , y0,i1−1), Q(1, 1) = Ci1(y1,0, y1,1, . . . , y1,i1−1), . . . , Q(1, j1 − 1) = Ci1

(yj1−1,0, yj1−1,1, . . . , yj1−1,i1−1) be the cycles of type H1 in M1(i1, j1, k1). Let G1(1, (2s+1)(mod j1))
= {x(2s+1)(mod j1),0, x(2s+1)(mod j1),1, . . . , x(2s+1)(mod j1),(i1−3)/3} be the set of vertices which lie be-
tween horizontal cycles Q(1, (2s + 1)(mod j1)) and Q(1, (2s + 2)(mod j1)) for 0 ≤ s ≤ j1 − 1. Simi-
larly, let Q(2, 0) = Ci2(z0,0, z0,1, . . . , z0,i2−1), Q(2, 1) = Ci2(z1,0, z1,1, . . . , z1,i2−1), . . . , Q(2, j2 − 1) =
Ci2(zj2−1,0, zj2−1,1, . . . , zj2−1,i2−1) be the cycles of type H1 in M2(i2, j2, k2) and G2(2, (2s+1)(mod j2)
) = {w(2s+1)(mod j2),0, w(2s+1)(mod j2),1, . . . , w(2s+1)(mod j2),(i2−3)/3} be the set of vertices which lie be-
tween horizontal cycles Q(1, (2s + 1)(mod j2)) and Q(1, (2s + 2)(mod j2)) for 0 ≤ s ≤ j2 − 1. Now,
we have the following cases.

Case 1: If (i1, j1, k1) = (i2, j2, k2) then i1 = i2, j1 = j2, k1 = k2. Define f : V (M1(i1, j1, k1)) →
V (M2(i2, j2, k2)) such that f(yg,h) = zg,h for 0 ≤ g ≤ j1−1 and 0 ≤ h ≤ i1−1 and f(x(2s+1)(mod j1),h)
= w(2s+1)(mod j1),h for the vertices of G1(1, (2s + 1)(mod j1)) and G2(2, (2s + 1)(mod j1)) for all
0 ≤ s ≤ j1 − 1 and 0 ≤ h ≤ (i1 − 3)/3. By f , M1(i1, j1, k1) ∼= M2(i2, j2, k2).

Case 2(a): If i1 = i2, j1 = j2 = 4m and k1 6= k2, where m ∈ N. We identify M2(i2, j2, k2) along the
vertical boundary P (z0,0, z1,0, . . . , zj2−1,0, z0,k2) and then cut along the path P (z0,r, z1,r−1, z2,r−2, z3,r,
x3,r/3, . . . , z0,r+k2) for some r = 3m, where m ∈ N and 0 ≤ r ≤ i2 − 1. This gives a representation
R of M2 with a map f ′ : V (M2(i2, j2, k2)) → V (R) such that

f ′(zg,h) =























zg,(i2+r−h)(mod i2)), if 0 ≤ h ≤ i2 − 1 and 0 ≤ g ≤ j2 − 1, g = 4m− 1, 4m;

where m ∈ N ∪ {0}

zg,(i2+r−h−1)(mod i2)), if 0 ≤ h ≤ i2 − 1 and 0 ≤ g ≤ j2 − 1, g 6= 4m− 1, 4m;

where m ∈ N ∪ {0}

f ′(w(2s+1)(mod j2),h) =























w(2s+1)(mod j2),(i2+r−3−3h)/3(mod i2/3), if 0 ≤ h ≤ (i2 − 3)/3, s = 2m,

0 ≤ s ≤ j2 − 1; where m ∈ N ∪ {0}

w(2s+1)(mod j2),(i2+r−3h)/3(mod i2/3), if 0 ≤ h ≤ (i2 − 3)/3, s = 2m+ 1,

0 ≤ s ≤ j2 − 1; where m ∈ N ∪ {0}

In R the lower and upper horizontal cycles are Q′ = Ci2(z0,r, z0,r−1, . . . , z0,i2−1, z0,0, z0,1, . . . ,
z0,r+1) and Q′′ = Ci2(z0,r+k2 , z0,r+k2−1, . . . , z0,r+k2+1) respectively. The path P (z0,r, z0,r−1, . . . ,
z0,r+k2) in Q′ has length r+ i2− (r+ k2) = i2− k2. Note that, R has j2 number of horizontal cycles
of length i2. So, we have R = M(i2, j2, i2 − k2). By l1,3 = l2,3, we see length(Q1,3) = length(Q2,3).
This implies, min{j1+j1/4+k1, j1+j1/4+(i1−k1)} = min{j2+j2/4+(i2−k2), j2+j2/4+i2−(i2−k2)}.
Since i1 = i2, j1 = j2 and k1 6= k2, it follows that k1+5j1/4 6= k2+5j2/4 and j1+ j1/4+(i1−k1) 6=
j2 + j2/4 + (i2 − k2). This gives k1 + 5j1/4 = i2 + 5j2/4 − k2 = i1 + 5j1/4 − k2 as i1 = i2
and j1 = j2. That is, k2 = i1 − k1. Now i2 − k2 = i2 − (i1 − k1) = k1 since i2 = i1. Thus,
M2(i2, j2, i2 − k2) = M1(i1, j1, k1). Therefore, by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2).

(b): If i1 = i2, j1 = j2 = 4m + 2 and k1 6= k2, where m ∈ N. We identify M2(i2, j2, k2) along
the vertical boundary P (z0,0, z1,0, . . . , zj2−1,0, z0,k2) of M2(i2, j2, k2) and then cut along the path
P (z0,r, z1,r−1, z2,r−2, z3,r, x3,r/3, . . . , z0,r+k2−1) for some r = 3m, where m ∈ N and 0 ≤ r ≤ i2 − 1.
This gives representation R of M2 with a map f ′′ : V (M2(i2, j2, k2)) → V (R) such that

f ′′(zg,h) =























zg,(i2+r−h)(mod i2)), if 0 ≤ h ≤ i2 − 1 and 0 ≤ g ≤ j2 − 1, g = 4m, 4m− 1;

where m ∈ N ∪ {0}

zg,(i2+r−h−1)(mod i2)), if 0 ≤ h ≤ i2 − 1 and 0 ≤ g ≤ j2 − 1, g 6= 4m, 4m− 1;

where m ∈ N ∪ {0}
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f ′′(w(2s+1)(mod j2),h) =























w(2s+1)(mod j2),(i2+r−3−3h)/3(mod i2/3), if 0 ≤ h ≤ (i2 − 3)/3, s = 2m,

0 ≤ s ≤ j2 − 1; where m ∈ N ∪ {0}

w(2s+1)(mod j2),(i2+r−3h)/3(mod i2/3), if 0 ≤ h ≤ (i2 − 3)/3, s = 2m+ 1,

0 ≤ s ≤ j2 − 1; where m ∈ N ∪ {0}

In R the lower and upper horizontal cycles are Q′ = Ci2(z0,r, z0,r−1, . . . , z0,i2−1, z0,0, z0,1, . . . ,
z0,r+1) and Q′′ = Ci2(z0,r+k2−1, z0,r+k2−2, . . . , z0,r+k2) respectively. The path P (z0,r, z0,r−1, . . . ,
z0,r+k2−1) in Q′ has length r + i2 − (r + k2 − 1) = i2 − k2 + 1. Note that, R has j2 number of
horizontal cycle of length i2. So, we have R = M2(i2, j2, i2 − k2 + 1). By l1,3 = l2,3, we see that
length(Q1,3) = length(Q2,3). This implies, min{j1 + ⌊j1/3⌋ + (k1 − 1), j1 + ⌊j1/3⌋ + (i1 − k1 + 1)}
= min{j2 + ⌊j2/3⌋ + (i2 − k2 + 1) − 1, j2 + ⌊j2/3⌋ + i2 − (i2 − k2)}. If k1 + j1 + ⌊j1/3⌋ − 1 =
k2 + j2 + ⌊j2/3⌋, it implies that k1 − k2 = 1 since j1 = j2. This is not possible since k1 − k2 = 3m,
where m ∈ N. This gives, k1 + j1 + ⌊j1/3⌋ − 1 = i2 + j2 + ⌊j2/3⌋ − k2 = i2 + j1 + ⌊j1/3⌋ − k2 as
j1 = j2. That is, k1 = i2 − k2 + 1. Thus, M2(i2, j2, i2 − k2 + 1) = M1(i1, j1, k1). Therefore, by f ,
M1(i1, j1, k1) ∼= M2(i2, j2, k2).

(c): If i1 = i2, j1 = j2 = 2 and k1 6= k2. In this case identify M2(i2, j2, k2) along the vertical
boundary P (z0,0, z1,0, z0,k2) of M2(i2, j2, k2) and then cut along the path P (z0,r, z1,r, z0,k2+r−1) for
some r = 3m, where m ∈ N and 0 ≤ r ≤ i2 − 1. Thus, we obtained a representation R of M2 with
a map f ′′′ : V (M2(i2, j2, k2)) → V (R) such that

f ′′′(zg,h) =

{

zg,(i2+r−h)(mod i2)), if g = 0 and 0 ≤ h ≤ i2 − 1

zg,(i2+r−h−1)(mod i2)), if g = 1 and 0 ≤ h ≤ i2 − 1

f ′′′(w1,h) = w1,(i2+r−3−3h)/3(mod i2/3) for 0 ≤ h ≤ (i2 − 3)/3.

In R, the lower and upper horizontal cycles are Q′ = Ci2(z0,r, z0,r−1, . . . , z0,i2−1, z0,0, z0,1, . . . ,
z0,r+1) and Q′′ = Ci2(z0,r+k2−1, z0,r+k2−2, . . . , z0,r+k2) respectively. The path P (z0,r, z0,r−1, . . . ,
z0,r+k2−1) in Q′ has length r + i2 − (r + k2 − 1) = i2 − k2 + 1. In this process, R has j2 number of
horizontal cycle of length i2. So, we have R = M2(i2, j2, i2 − k2 + 1). By assumption, l1,3 = l2,3,
length(Q1,3) = length(Q1,3). This implies, min{j1 + j1/2 + (k1 − 1), j1 + j1/2 + (i1 − k1 + 1)} =
min{j2 + j2/2 + (i2 − k2 + 1) − 1, j2 + j2/2 + i2 − (i2 − k2)}. If k1 + 3j1/2 − 1 = k2 + 3j2/2,
then k1 − k2 = 1 since j1 = j2. This is not possible as k1 − k2 = 3m, where m ∈ N. This gives,
k1 + 3j1/2 − 1 = i2 + 3j2/2 − k2 = i2 + 3j1/2 − k2 as j1 = j2. That is, k1 = i2 − k2 + 1. Thus,
M(i2, j2, i2 − k2 + 1) = M(i1, j1, k1). Therefore, by f , M1(i1, j1, k1) ∼= M2(i2, j2, k2). So, the claim
follows. Hence, M1

∼= M2.
Converse of the above lemma follows from the converse part of Lemma 3.5.2. ✷

Now doing the computing for the first four admissible values of |V (M)|, we get Table 3.7. For
|V (M)| = 28, the computations is illustrated as follows:

Example 3.7.1 Let M be a DSEM of type [36 : 32.4.3.4] with 28 vertices on the torus. By
Lemma 3.7.1, M has four M(i, j, k) representation, namely, M(6, 4, 0),M(6, 4, 3),M(12, 2, 5), and
M(12, 2, 8) see Figures 3.7.3, 3.7.4, 3.7.5, 3.7.6 respectively. In M(6, 4, 0), Q1,1 = C6(u1, u2, u3, u4,
u5, u6) and Q1,2 = C5(u1, v1, x1, y1, z1) are cycles of type H1,H2 respectively and Q1,3 = C5(u1, v1,
x1, y1, z1) is a cycle of type H3. In M(6, 4, 3), Q2,1 = C6(u1, u2, u3, u4, u5, u6), Q2,2 = C10(u1, v1,
x1, y1, z1, u4, v4, x4, y4, z2), and Q2,3 = C8(u4, v4, x4, y4, z2, u1, u2, u3) are cycles of type H1,H2,H3

respectively. In M(12, 2, 5), Q3,1 = C12(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12), Q3,2 = C20(x1,
y1, x6, y5, z2, x10, y10, x3, y2, z1, x7, y7, x12, y11, z4, x4, y4, x9, y8, z3), and Q3,3 = C7(x6, y5, z2, x10, x9,
x8, x7) are cycles of type H1,H2,H3 respectively. In M(12, 2, 8), Q4,1 = C12(x1, x2, x3, x4, x5, x6, x7,
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x8, x9, x10, x11, x12), Q4,2 = C20(x1, y1, x9, y8, z3, x4, y4, x12, y11, z4, x7, y7, x3, y2, z1, x10, y10, x6, y5,
z2), and Q4,3 = C8(x9, y8, z3, x4, x5, x6, x7, x8) are cycles of type H1,H2,H3 respectively.

Since length(Q1,1) 6= length(Qr,1) and length(Q2,1) 6= length(Qr,1) for r = 3, 4, M(6, 4, 0) ≇

M(12, 2, 5),M(12, 2, 8) and M(6, 4, 3) ≇ M(12, 2, 5),M(12, 2, 8). Also, length(Q1,2) 6= length(Q2,2),
M(6, 4, 0) ≇ M(6, 4, 3). We identify M(12, 2, 5) along the path P (x1, y1, x6) and cut along the path
P (x4, y3, x8). This gives M(12, 2, 8) represntation, given in Figure 3.7.7. By the isomorphism
map define in Lemma 3.7.2, M(12, 2, 5) ∼= M(12, 2, 8). Therefore, there are three DSEMs of type
[36 : 32.4.3.4] with 28 vertices on the torus upto isomorphism.

u1 u2 u3 u4 u5 u6 u1

v1 v2 v3 v4 v5 v6 v1

w1 w2

x1 x2 x3 x4 x5 x6 x1

y1 y2 y3 y4 y5 y6 y1

z1 z2 z1

u1 u2 u3 u4 u5 u6 u1

Figure 3.7.3: M(6, 4, 0)

u1 u2 u3 u4 u5 u6 u1

v1 v2 v3 v4 v5 v6 v1

w1 w2

x1 x2 x3 x4 x5 x6 x1

y1 y2 y3 y4 y5 y6 y1

z1 z2 z1

u4 u5 u6 u1 u2 u3 u4

Figure 3.7.4: M(6, 4, 3)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x1

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y1

z1 z2 z3 z4

x6 x7 x8 x9 x10 x11 x12 x1 x2 x3 x4 x5 x6

Figure 3.7.5: M(12, 2, 5)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x1

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y1

z1 z2 z3 z4

x9 x10 x11 x12 x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 3.7.6: M(12, 2, 8)

x4 x3 x2 x1 x12 x11 x10 x9 x8 x7 x6 x5 x4

y3 y2 y1 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3

z1 z4 z3 z2

x8 x7 x6 x5 x4 x3 x2 x1 x12 x11 x10 x9 x8

Figure 3.7.7: M(12, 2, 8)

Table 3.7: DSEMs of type [36 : 32.4.3.4] on the torus for |V (M)| ≤ 42
|V (M)| Isomorphic classes Length of cycles No of maps

21 M(9, 2, 5) (9, 5, 7) 1

28 M(6, 4, 0) (6, 5, 5) 3
M(6, 4, 3) (6, 10, 8)
M(12, 2, 5),M(12, 2, 8) (12, 20, 7)

35 M(15, 2, 5),M(15, 2, 11) (15, 25, 7) 2
M(15, 2, 8) (15, 5, 10)

42 M(6, 6, 2),M(6, 6, 5) (6, 30, 9) 5
M(9, 4, 0) (9, 5, 5)
M(9, 4, 3),M(9, 4, 6) (9, 15, 8)
M(18, 2, 5),M(18, 2, 14) (18, 10, 7)
M(18, 2, 8),M(18, 2, 11) (18, 30, 10)

Proof of theorem 2.1. Proof of the Theorem 2.1 follows from the results of the Sections 3.1, 3.2,
3.3, 3.4, 3.5, 3.6, 3.7. ✷
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